SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szewczyk M) srt2:(2020-2024)"

Sökning: WFRF:(Szewczyk M) > (2020-2024)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Adamczewski-Musch, J., et al. (författare)
  • Production and electromagnetic decay of hyperons : a feasibility study with HADES as a phase-0 experiment at FAIR
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A feasibility study has been performed in order to investigate the performance of the HADES detector to measure the electromagnetic decays of the hyperon resonances Sigma(1385)(0), Lambda(1405) and Lambda(1520) as well as the production of double strange baryon systems Xi(-) and Lambda Lambda in p + p reactions at a beam kinetic energy of 4.5GeV. The existing HADES detector will be upgraded by a new Forward Detector, which extends the detector acceptance into a range of polar angles that plays a crucial role for these investigations. The analysis of each channel is preceded by a consideration of the production cross-sections. Afterwards the expected signal count rates using a target consisting of either liquid hydrogen or polyethylene are summarized.
  •  
4.
  • Rutter, Lindsay, et al. (författare)
  • A New Era for Space Life Science : International Standards for Space Omics Processing
  • 2020
  • Ingår i: PATTERNS. - : Elsevier BV. - 2666-3899. ; 1:9, s. 100148-
  • Forskningsöversikt (refereegranskat)abstract
    • Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments onmodel organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries fromtheseprecious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.
  •  
5.
  • Zimyanin, Vitaly L., et al. (författare)
  • Live cell imaging of ATP levels reveals metabolic compartmentalization within motoneurons and early metabolic changes in FUS ALS motoneurons
  • 2023
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
  •  
6.
  • Chen, Zheng, et al. (författare)
  • Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant N-15 NMR spectroscopy
  • 2021
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; :20
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state N-15 NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in N-doped carbon at natural N-15 isotope abundance. Here we report a green chemistry approach for the synthesis of N-doped carbon using cellulose as a precursor, and a study of the catalytic properties and atomic structures of the related catalyst. N-doped carbon (NH3) was obtained by the oxidation of cellulose with HNO3 followed by ammonolysis at 800 degrees C. It had a N content of 6.5 wt% and a surface area of 557 m(2) g(-1), and N-15 ssNMR spectroscopy provided evidence for graphitic nitrogen besides regular pyrrolic and pyridinic nitrogen. This structural determination allowed probing the role of graphitic nitrogen in electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH3) showed higher electrocatalytic activities in the OER and HER under alkaline conditions and higher activity for nitrite reduction, as compared with a catalyst prepared by the carbonization of HNO3-treated cellulose in N-2. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH3) was directly related to the graphitic nitrogen functions. Complementary structural analyses by means of C-13 and H-1 ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N-2 adsorption were performed and provided support to the findings. The results show that directly-excited N-15 ssNMR spectroscopy at natural N-15 abundance is generally capable of providing information on N-doped carbon materials if relaxation properties are favorable. It is expected that this approach can be applied to a wide range of solids with an intermediate concentration of N atoms.
  •  
7.
  • Cope, Henry, et al. (författare)
  • Routine omics collection is a golden opportunity for European human research in space and analog environments
  • 2022
  • Ingår i: PATTERNS. - : Elsevier BV. - 2666-3899. ; 3:10, s. 100550-
  • Tidskriftsartikel (refereegranskat)abstract
    • Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight, We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods.
  •  
8.
  • Deane, C. S., et al. (författare)
  • Space omics research in Europe : Contributions, geographical distribution and ESA member state funding schemes
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:3, s. 103920-
  • Tidskriftsartikel (refereegranskat)abstract
    • The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include “omic” analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.
  •  
9.
  • Forde, Rita, et al. (författare)
  • The Impact of the COVID-19 pandemic on people with diabetes and diabetes services : A pan-European survey of diabetes specialist nurses undertaken by the Foundation of European Nurses in Diabetes survey consortium
  • 2021
  • Ingår i: Diabetic Medicine. - : Wiley. - 0742-3071 .- 1464-5491. ; 38:5
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To describe diabetes nurses' perspectives on the impact of the COVID-19 pandemic on people with diabetes and diabetes services across Europe.METHODS: An online survey developed using a rapid Delphi method. The survey was translated into 17 different languages and disseminated electronically in 27 countries via national diabetes nurse networks.RESULTS: Survey responses from 1829 diabetes nurses were included in the analysis. The responses indicated that 28% (n=504) and 48% (n=873) of diabetes nurses felt the COVID-19 pandemic had impacted 'a lot' on the physical and psychological risks of people with diabetes, respectively. The following clinical problems were identified as having increased 'a lot': anxiety 82% (n=1486); diabetes distress 65% (n=1189); depression 49% (n= 893); acute hyperglycaemia 39% (n=710); and foot complications 17% (n=323). Forty-seven percent (n=771) of respondents identified that the level of care provided to people with diabetes had declined either extremely or quite severely. Self-management support, diabetes education and psychological support were rated by diabetes nurse respondents as having declined extremely or quite severely during the COVID-19 pandemic by 31% (n=499), 63% (n=1,027) and 34% (n=551), respectively.CONCLUSION: The findings show that diabetes nurses across Europe have seen significant increases in both physical and psychological problems in their patient populations during COVID-19. The data also show that clinical diabetes services have been significantly disrupted. As the COVID-19 situation continues we need to adapt care systems with some urgency to minimise the impact of the pandemic on the diabetes population.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy