SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takahashi Junko) srt2:(2005-2009)"

Sökning: WFRF:(Takahashi Junko) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geisler-Lee, Jane, et al. (författare)
  • Poplar carbohydrate-active enzymes. Gene identification and expression analyses.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 946-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.
  •  
2.
  • Ginya, Harumi, et al. (författare)
  • Development of the Handy Bio-Strand and its application to genotyping of OPRM1 (A118G)
  • 2007
  • Ingår i: Analytical Biochemistry. - : Elsevier BV. - 0003-2697 .- 1096-0309. ; 367:1, s. 79-86
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously developed a three-dimensional microarray system, the Bio-Strand, which exhibits advantages in automated DNA analysis in combination with our Magtration Technology. In the current study, we have developed a compact system for the Bio-Strand, the Handy Bio-Strand, which consists of several tools for the preparation of Bio-Strand Tip, hybridization, and detection. Using the Handy Bio-Strand, we performed single nucleotide polymorphism (SNP) genotyping of OPRM1 (A118G) by allele-specific oligonucleotide competitive hybridization (ASOCH). DNA fragments containing SNP sites were amplified from genomic DNA by PCR and then were fixed on a microporous nylon thread. Thus, prepared Bio-Strand Tip was hybridized with allele-specific Cy5 probes (<15mer), on which the SNP site was designed to be located in the center. By optimizing the amount of competitors, the selectivity of Cy5 probes increased without a drastic signal decrease. OPRM1 (A118G) genotypes of 23 human genomes prepared from whole blood samples were determined by ASOCH using the Handy Bio-Strand. The results were perfectly consistent with those determined by PCR direct sequencing. ASOCH using the Handy Bio-Strand would be a very simple and reliable method for SNP genotyping for small laboratories and hospitals.
  •  
3.
  • Ibatullin, Farid M., et al. (författare)
  • A Real-Time Fluorogenic Assay for the Visualization of Glycoside Hydrolase Activity in Planta
  • 2009
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 151:4, s. 1741-1750
  • Tidskriftsartikel (refereegranskat)abstract
    • There currently exists a diverse array of molecular probes for the in situ localization of polysaccharides, nucleic acids, and proteins in plant cells, including reporter enzyme strategies (e. g. protein-glucuronidase fusions). In contrast, however, there is a paucity of methods for the direct analysis of endogenous glycoside hydrolases and transglycosidases responsible for cell wall remodeling. To exemplify the potential of fluorogenic resorufin glycosides to address this issue, a resorufin beta-glycoside of a xylogluco-oligosaccharide (XXXG-beta-Res) was synthesized as a specific substrate for in planta analysis of XEH activity. The resorufin aglycone is particularly distinguished for high sensitivity in muro assays due to a low pK(a) (5.8) and large extinction coefficient (epsilon 62,000 M-1 cm(-1)), long-wavelength fluorescence (excitation 571 nm/emission 585 nm), and high quantum yield (0.74) of the corresponding anion. In vitro analyses demonstrated that XXXG-beta-Res is hydrolyzed by the archetypal plant XEH, nasturtium (Tropaeolum majus) NXG1, with classical Michaelis-Menten substrate saturation kinetics and a linear dependence on both enzyme concentration and incubation time. Further, XEH activity could be visualized in real time by observing the localized increase in fluorescence in germinating nasturtium seeds and Arabidopsis (Arabidopsis thaliana) inflorescent stems by confocal microscopy. Importantly, this new in situ XEH assay provides an essential complement to the in situ xyloglucan endotransglycosylase assay, thus allowing delineation of the disparate activities encoded by xyloglucan endotransglycosylase/hydrolase genes directly in plant tissues. The observation that XXXG-beta-Res is also hydrolyzed by diverse microbial XEHs indicates that this substrate, and resorufin glycosides in general, may find broad applicability for the analysis of wall restructuring by polysaccharide hydrolases during morphogenesis and plant-microbe interactions.
  •  
4.
  • Takahashi Schmidt, Junko, et al. (författare)
  • KORRIGAN1 and its Aspen Homolog PttCel9A1 Decrease Cellulose Crystallinity in Arabidopsis Stems
  • 2009
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 50:6, s. 1099-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • KORRIGAN1 (KOR1) is a membrane-bound cellulase implicated in cellulose biosynthesis. PttCel9A1 from hybrid aspen (Populus tremula L. tremuloides Michx.) has high sequence similarity to KOR1 and we demonstrate here that it complements kor1-1 mutants, indicating that it is a KOR1 ortholog. We investigated the function of PttCel9A1/KOR1 in Arabidopsis secondary growth using transgenic lines expressing 35S::PttCel9A1 and the KOR1 mutant line irx2-2. The presence of elevated levels of PttCel9A1/KOR1 in secondary walls of 35S::PttCel9A1 lines was confirmed by in muro visualization of cellulase activity. Compared with the wild type, 35S::PttCel9A1 lines had higher trifluoroacetic acid (TFA)-hydrolyzable glucan contents, similar Updegraff cellulose contents and lower cellulose crystallinity indices, as determined by C-13 solid-state nuclear magnetic resonance (NMR) spectroscopy. irx2-2 mutants had wild-type TFA-hydrolyzable glucan contents, but reduced Updegraff cellulose contents and higher than wild-type cellulose crystallinity indices. The data support the hypothesis that PttCel9A1/KOR1 activity is present in cell walls, where it facilitates cellulose biosynthesis in a way that increases the amount of non-crystalline cellulose.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy