SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takayanagi R) srt2:(2011-2014)"

Sökning: WFRF:(Takayanagi R) > (2011-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Baron, P., et al. (författare)
  • The level 2 research product algorithms for the superconducting submillimeter-wave limb-emission sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques Discussions. - : Copernicus GmbH. - 1867-8610. ; 4:3, s. 3593-3645
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processingchain developed for the Superconducting Submillimeter-Wave Limb-EmissionSounder (SMILES). The chain has been developed in parallel to the operationalchain for conducting researches on calibration and retrieval algorithms. L2rchain products are available to the scientific community. The objective ofversion 2 is the retrieval of the vertical distribution of trace gases in thealtitude range of 18-90 km. An theoretical error analysis is conducted toestimate the retrieval feasibility of key parameters of the processing:line-of-sight elevation tangent altitudes (or angles), temperature and O3 profiles. The line-of-sight tangent altitudes are retrievedbetween 20 and 50 km from the strong ozone (O3) line at 625.371 GHz,with low correlation with the O3 volume-mixing ratio and temperatureretrieved profiles. Neglecting the non-linearity of the radiometric gain inthe calibration procedure is the main systematic error. It is large for theretrieved temperature (between 5-10 K). Therefore, atmospheric pressure cannot be derived from the retrieved temperature, and, then, in the altituderange where the line-of-sight tangent altitudes are retrieved, the retrievedtrace gases profiles are found to be better represented on pressure levelsthan on altitude levels. The error analysis for the retrieved HOCl profiledemonstrates that best results for inverting weak lines can be obtained byusing narrow spectral windows. Future versions of the L2r algorithms willimprove the temperature/pressure retrievals and also provide information inthe upper tropospheric/lower stratospheric region (e.g., water vapor, icecontent, O3) and on stratospheric and mesospheric line-of-sight winds.
  •  
3.
  • Baron, P., et al. (författare)
  • The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4, s. 2105-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.
  •  
4.
  • Cho, Yoon Shin, et al. (författare)
  • Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy