SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamarit Daniel) srt2:(2020-2023)"

Sökning: WFRF:(Tamarit Daniel) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dharamshi, Jennah E., et al. (författare)
  • Marine Sediments Illuminate Chlamydiae Diversity and Evolution
  • 2020
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 30:6, s. 1032-1048.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.
  •  
2.
  • Dyrhage, Karl, et al. (författare)
  • Genome Evolution of a Symbiont Population for Pathogen Defense in Honeybees
  • 2022
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653 .- 1759-6653. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The honeybee gut microbiome is thought to be important for bee health, but the role of the individual members is poorly understood. Here, we present closed genomes and associated mobilomes of 102 Apilactobacillus kunkeei isolates obtained from the honey crop (foregut) of honeybees sampled from beehives in Helsingborg in the south of Sweden and from the islands Gotland and angstrom land in the Baltic Sea. Each beehive contained a unique composition of isolates and repeated sampling of similar isolates from two beehives in Helsingborg suggests that the bacterial community is stably maintained across bee generations during the summer months. The sampled bacterial population contained an open pan-genome structure with a high genomic density of transposons. A subset of strains affiliated with phylogroup A inhibited growth of the bee pathogen Melissococcus plutonius, all of which contained a 19.5 kb plasmid for the synthesis of the antimicrobial compound kunkecin A, while a subset of phylogroups B and C strains contained a 32.9 kb plasmid for the synthesis of a putative polyketide antibiotic. This study suggests that the mobile gene pool of A. kunkeei plays a key role in pathogen defense in honeybees, providing new insights into the evolutionary dynamics of defensive symbiont populations.
  •  
3.
  • Eme, Laura, et al. (författare)
  • Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 992-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes(1). However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved(2-4). Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.
  •  
4.
  • Stairs, Courtney W., et al. (författare)
  • Chlamydial contribution to anaerobic metabolism during eukaryotic evolution
  • 2020
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 6:35
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H-2 exchange. However, there are no strong indications that modern eukaryotic H-2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H-2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H-2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H-2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
  •  
5.
  • Tamarit Chuliá, Daniel (författare)
  • Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.The ESCRT pathway is crucial for membrane remodelling in eukaryotes. Here, Hatano et al. explore the phylogeny, structure, and biochemistry of homologues of the ESCRT machinery and the associated ubiquitylation system in Asgard archaea, the closest living relatives of eukaryotes.
  •  
6.
  • Tamarit Chuliá, Daniel (författare)
  • Prospective CO2 and CO bioconversion into ectoines using novel microbial platforms
  • 2022
  • Ingår i: Reviews in Environmental Science and Biotechnology. - : Springer Science and Business Media LLC. - 1569-1705 .- 1572-9826. ; 21, s. 571-581
  • Forskningsöversikt (refereegranskat)abstract
    • Microbial conversion of CO2 and CO into chemicals is a promising route that can contribute to the cost-effective reduction of anthropogenic green house and waste gas emissions and create a more circular economy. However, the biotechnological valorization of CO2 and CO into chemicals is still restricted by the limited number of model microorganisms implemented, and the small profit margin of the products synthesized. This perspective paper intends to explore the genetic potential for the microbial conversion of CO2 and CO into ectoines, in a tentative to broaden bioconversion platforms and the portfolio of products from C-1 gas fermentations. Ectoine and hydroxyectoine can be produced by microorganisms growing at high salinity. They are high-value commodities for the pharmaceutical and medical sectors (1000-1200 euro/kg). Currently microbial ectoine production is based on sugar fermentations, but expansion to other more sustainable and cheaper substrates is desirable. In this work, a literature review to identify halophilic microbes able to use CO2 and CO as a carbon source was performed. Subsequently, genomes of this poll of microbes were mined for genes that encode for ectoine and hydroxyectoine synthesis (ectABCD, ask, asd and ask_ect). As a result, we identified a total of 31 species with the genetic potential to synthesize ectoine and 14 to synthesize hydroxyectoine. These microbes represent the basis for the creation of novel microbial-platforms that can promote the development of cost-effective and sustainable valorization chains of CO2 and CO in different industrial scenarios.
  •  
7.
  • Tamarit, Daniel, et al. (författare)
  • A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses
  • 2022
  • Ingår i: Nature Microbiology. - : Springer Nature. - 2058-5276. ; 7:7, s. 948-
  • Tidskriftsartikel (refereegranskat)abstract
    • Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ecology and evolution of Asgard archaea.
  •  
8.
  • Tamarit, Daniel, 1988-, et al. (författare)
  • Rethinking microbial symbioses
  • 2020
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 367:3
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy