SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tapfer Arne) srt2:(2012)"

Sökning: WFRF:(Tapfer Arne) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bech, Martin, et al. (författare)
  • Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry
  • 2012
  • Ingår i: International Workshop on X-Ray and Neutron Phase Imaging with Gratings. - : AIP. - 1551-7616 .- 0094-243X. - 9780735410725 ; 1466, s. 130-136
  • Konferensbidrag (refereegranskat)abstract
    • After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.
  •  
2.
  • Fu, Jian, et al. (författare)
  • A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:19, s. 21512-21519
  • Tidskriftsartikel (refereegranskat)abstract
    • Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications. (C) 2012 Optical Society of America
  •  
3.
  • Tapfer, Arne, et al. (författare)
  • Experimental results from a preclinical X-ray phase-contrast CT scanner
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 109:39, s. 15691-15696
  • Tidskriftsartikel (refereegranskat)abstract
    • To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by minimal changes in the grating alignment during gantry rotation. In this paper, we present the first experimental results from the system together with an adaptive phase recovery method that corrects for these phase artifacts. Using this method, we show that the scanner can recover quantitatively accurate Hounsfield units in attenuation and phase. Moreover, we present a first tomography scan of biological tissue with complementary information in attenuation and phase contrast. The present study hence demonstrates the feasibility of grating-based phase contrast with a rotating gantry for the first time and paves the way for future in vivo studies on small animal disease models (in the mid-term future) and human diagnostics applications (in the long-term future).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy