SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tarascon Jean Marie) srt2:(2020-2023)"

Sökning: WFRF:(Tarascon Jean Marie) > (2020-2023)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
4.
  • Edström, Kristina, Professor, 1958- (författare)
  • Battery 2030+ Roadmap
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is the biggest challenge facing the world today. Europe is committed to achieving a climate-neutral society by 2050, as stated in the European Green Deal.1 The transition towards a climate-neutral Europe requires fundamental changes in the way we generate and use energy. If batteries can be made simultaneously more sustainable, safe, ultrahigh performing, and affordable, they will be true enablers, “accelerating the shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy” - all of which are important elements of the UN Sustainable Development Goals.In other words, batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors. However, to reach our sustainability goals, batteries must exhibit ultra-high performance beyond their capabilities today. Ultra-high performance includes energy and power performance approaching theoretical limits, outstanding lifetime and reliability, and enhanced safety and environmental sustainability. Furthermore, to be commercially successful, these batteries must support scalability that enables cost-effective large-scale production.BATTERY 2030+, is the large-scale, long-term European research initiative with the vision of inventing the sustainable batteries of the future, to enable Europe to reach the goals envisaged in the European Green Deal. BATTERY 2030+ is at the heart of a green and connected society.BATTERY 2030+ will contribute to create a vibrant battery research and development (R&D) community in Europe, focusing on long-term research that will continuously feed new knowledge and technologies throughout the value chain, resulting in new products and innovations. In addition, the initiative will attract talent from across Europe and contribute to ensure access to competences needed for ongoing societal transformation.The BATTERY 2030+ aims are:• to invent ultra-high performance batteries that are safe, affordable, and sustainable, witha long lifetime.• to provide new tools and breakthrough technologies to the European battery industrythroughout the value chain.• to enable long-term European leadership in both existing markets (e.g., transport andstationary storage) and future emerging sectors (e.g., robotics, aerospace, medical devices, and Internet of things)With this roadmap, BATTERY 2030+ advocates research directions based on a chemistry-neutral approach that will allow Europe to reach or even surpass its ambitious battery performance targets set in the European Strategic Energy Technology Plan (SET-Plan)3 and foster innovation throughout the battery value chain.
  •  
5.
  • Li, Biao, et al. (författare)
  • Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox
  • 2022
  • Ingår i: Nature Materials. - : Springer Nature. - 1476-1122 .- 1476-4660. ; 21:10, s. 1165-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 involves a long-lived intermediate Ni3+/4+ species, which can fully evolve to Ni2+ during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni3+/4+ species goes through a dynamic LMCT process (Ni3+/4+–O2− → Ni2+–On−). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic–anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT.
  •  
6.
  • Li, Biao, et al. (författare)
  • Constructing “Li-rich Ni-rich” oxide cathodes for high-energy-density Li-ion batteries
  • 2023
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 16:3, s. 1210-1222
  • Tidskriftsartikel (refereegranskat)abstract
    • The current exploration of high-energy-density cathode materials for Li-ion batteries is mainly concentrated on either so-called “Li-rich” or “Ni-rich” oxides. However, both are suffering from formidable practical challenges. Here, we combine these two concepts to obtain “Li-rich Ni-rich” oxides in pursuit of more practical high-energy-density cathodes. As a proof of concept, we synthesized an array of Li1+yNi(3−5y)/3Mo2y/3O2 oxides, whose structures were identified to be the coexistence of LiNiO2-rich and Li4MoO5-rich domains with the aid of XRD, TEM, and NMR techniques. Such an intergrowth structure of 5–20 nm size enables excellent mechanical and structural reversibility for the layered rock-salt LiNiO2-rich domain upon cycling thanks to the robust cubic rock-salt Li4MoO5-rich domain enabling an “epitaxial stabilization” effect. As a result, we achieved high capacities (>220 mA h g−1) with Ni contents as low as 80%; the Li1.09Ni0.85Mo0.06O2 member (y = 0.09) shows much improved cycling performances (91% capacity retention for 100 cycles at C/10) compared with pure LiNiO2. This work validates the feasibility of constructing Li-rich Ni-rich compounds in the form of intergrowing domains and hence unlocks vast possibilities for future cathode design.
  •  
7.
  • Li, Biao, et al. (författare)
  • Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes
  • 2023
  • Ingår i: Nature Materials. - : Springer Nature. - 1476-1122 .- 1476-4660. ; 22:11, s. 1370-1379
  • Tidskriftsartikel (refereegranskat)abstract
    • Li[LixNiyMnzCo1−x−y−z]O2 (lithium-rich NMCs) are benchmark cathode materials receiving considerable attention due to the abnormally high capacities resulting from their anionic redox chemistry. Although their anionic redox mechanisms have been much investigated, the roles of cationic redox processes remain underexplored, hindering further performance improvement. Here we decoupled the effects of nickel and cobalt in lithium-rich NMCs via a comprehensive study of two typical compounds, Li1.2Ni0.2Mn0.6O2 and Li1.2Co0.4Mn0.4O2. We discovered that both Ni3+/4+ and Co4+, generated during cationic redox processes, are actually intermediate species for triggering oxygen redox through a ligand-to-metal charge-transfer process. However, cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer by favouring more transition metal migration, leading to less cationic redox but more oxygen redox, more O2 release, poorer cycling performance and more severe voltage decay. Our work highlights a compositional optimization pathway for lithium-rich NMCs by deviating from using cobalt to using nickel, providing valuable guidelines for future high-capacity cathode design.
  •  
8.
  • Morozov, Anatolii V., et al. (författare)
  • Retardation of Structure Densification by Increasing Covalency in Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:15, s. 6779-6791
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the outstanding discharge capacity provided by oxygen redox activity, Li-rich layered oxide positive electrode materials for Li-ion batteries attract tremendous attention. However, there is still no full consensus on the role that the ionocovalency of transition metal (TM)–oxygen (O) chemical bonding plays in the reversibility of the oxygen redox as well as on both local crystal and electronic structure transformations. Here, we managed to tune the cationic/anionic redox contributions to the overall electrochemical activity using the xLi2RuO3-(1 – x)Li1.2Ni0.2Mn0.6O2 solid solutions as a model system possessing the same crystal structure and morphology as Li-rich layered oxides. We conclusively traced the whole cascade of events from increasing the covalency of the TM–O bond, suppressing irreversible oxygen oxidation to the generation of the reduced Mn species toward retarding the structure “densification” in the Li-rich layered oxides. The results demonstrate that enhancing the degree of covalency of the TM–O bonding is vitally important for anchoring the reversibility of the charge compensation mechanism occurring through partial oxygen oxidation.
  •  
9.
  • Vegge, Tejs, et al. (författare)
  • Toward Better and Smarter Batteries by Combining AI with Multisensory and Self-Healing Approaches
  • 2021
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 11:23
  • Tidskriftsartikel (refereegranskat)abstract
    • With an exponentially growing demand for rechargeable batteries, the development of new ultra-performant, fully scalable, and sustainable battery technologies and materials must be accelerated. Creating a holistic, closed-loop infrastructure for materials discovery, manufacturing, and battery testing that utilizes a common data infrastructure and autonomous workflows to bridge big data from all domains of the battery value chain, can pave the way for a transformative reduction in the required time to discovery. By embedding multisensory and self-healing capabilities in future battery technologies and integrating these with AI and physics-aware machine learning models capable of predicting the spatio-temporal evolution of battery materials and interfaces, it will, in time, be possible to identify, predict and prevent potential degradation and failure modes. This will facilitate enhanced battery quality, reliability, and life, for example, by preemptively changing the battery charging conditions or releasing self-healing additives from the separator membrane, akin to preemptive medicine, and form the basis for inverse design of new battery materials, interfaces, and additives. The large-scale and long-term European research initiative BATTERY 2030+ seeks to make this longer-than ten-year vision a reality through the development of a versatile and chemistry neutral "Battery Interface Genome-Materials Acceleration Platform" infrastructure (BIG-MAP).
  •  
10.
  • Yin, Wei, et al. (författare)
  • Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for Li1.2Ni0.13Mn0.54Co0.13O2 electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A’ formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P” phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of Li1.2Ni0.13Mn0.54Co0.13O2 and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy