SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tavajohi Hassan Kiadeh Naser) srt2:(2023)"

Sökning: WFRF:(Tavajohi Hassan Kiadeh Naser) > (2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yuqing, et al. (författare)
  • Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Low temperatures severely impair the performance of lithium-ion batteries, which demand powerful electrolytes with wide liquidity ranges, facilitated ion diffusion, and lower desolvation energy. The keys lie in establishing mild interactions between Li+ and solvent molecules internally, which are hard to achieve in commercial ethylene-carbonate based electrolytes. Herein, we tailor the solvation structure with low-ε solvent-dominated coordination, and unlock ethylene-carbonate via electronegativity regulation of carbonyl oxygen. The modified electrolyte exhibits high ion conductivity (1.46 mS·cm−1) at −90 °C, and remains liquid at −110 °C. Consequently, 4.5 V graphite-based pouch cells achieve ~98% capacity over 200 cycles at −10 °C without lithium dendrite. These cells also retain ~60% of their room-temperature discharge capacity at −70 °C, and miraculously retain discharge functionality even at ~−100 °C after being fully charged at 25 °C. This strategy of disrupting solvation dominance of ethylene-carbonate through molecular charge engineering, opens new avenues for advanced electrolyte design.
  •  
2.
  • Du, Hao, et al. (författare)
  • Easily recyclable lithium-ion batteries : Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder
  • 2023
  • Ingår i: Battery Energy. - : John Wiley & Sons. - 2768-1688 .- 2768-1696. ; 2:4, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling lithium-ion batteries (LIBs) is fundamental for resource recovery, reducing energy consumption, decreasing emissions, and minimizing environmental risks. The inherited properties of materials and design are not commonly attributed to the complexity of recycling LIBs and their effects on the recycling process. The state-of-the-art battery recycling methodology consequently suffers from poor recycling efficiency and high consumption from issues with the cathode and the binder material. As a feasibility study, high-energy-density cathode material LiFeMnPO4 with a water-soluble polyacrylic acid (PAA) binder is extracted with dilute hydrochloric acid at room temperature under oxidant-free conditions. The cathode is wholly leached with high purity and is suitable for reuse. The cathode is easily separated from its constituent materials and reduces material and energy consumption during recycling by 20% and 7%, respectively. This strategy is utilized to fabricate recyclable-oriented LiFeMnPO4/graphite LIBs with a PAA binder and carbon paper current collector. Finally, the limitation of the solubility of the binder is discussed in terms of recycling. This research hopefully provides guidance for recycling-oriented design for the circular economy of the LIB industry.
  •  
3.
  • Du, Hao, et al. (författare)
  • Recovery of lithium salt from spent lithium-ion battery by less polar solvent wash and water extraction
  • 2023
  • Ingår i: Carbon Neutralization. - : John Wiley & Sons. - 2769-3325 .- 2769-3325. ; 2:4, s. 416-424
  • Tidskriftsartikel (refereegranskat)abstract
    • The lithium hexafluorophosphate (LiPF6) in spent lithium-ion batteries (LIBs) is a potentially valuable resource and a significant environmental pollutant. Unfortunately, most of the LiPF6 in a spent LIB is difficult to extract because the electrolyte is strongly adsorbed by the cathode, anode, and separator. Storing extracted electrolyte is also challenging because it contains LiPF6, which promotes the decomposition of the solvent. Here we show that electrolytes in spent LIBs can be collected by a less polar solvent dimethyl carbonate (DMC) wash, and LiPF6 can be concentrated by simple aqueous extraction by lowering ethylene carbonate (EC) content in the recycled electrolyte. Due to the similar dielectric constant of EC and water, reducing the content of EC in LIB electrolytes, or even eliminating it, facilitates the separation of water and electrolyte, thus enabling the lithium salts in the electrolyte to be separated from the organic solvent. The lithium salt extracting efficiency achieved in this way can be as high as 99.8%, and fluorine and phosphorus of LiPF6 can be fixed in the form of stable metal fluoride and phosphate by hydrothermal method. The same strategy can be used in industrial waste electrolyte recycling by diluting the waste with DMC and extracting the resulting solution with water. This work thus reveals a new route for waste electrolyte treatment and will also support the development of advanced EC-free electrolytes for high-performance, safe, and easily recyclable LIBs.
  •  
4.
  • Ismail, Norafiqah, 1989- (författare)
  • Sustainable membrane fabrication using greener solvents
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Technologies based on polymeric membranes have diverse applications in purification, desalination, and decontamination processes. However, current membrane production techniques are neither sustainable nor environmentally benign. A Life-Cycle Assessment (LCA) was conducted to determine how the choice of membrane polymer (fossil-based or bio-based), the solvent (toxic or green), and the energy source used in membrane fabrication affect their environmental impacts. The results showed that solvent toxicity is the main obstacle to sustainable membrane production. The harmful environmental effects of current membrane production processes are largely due to the use of toxic solvents, particularly polar aprotic solvents such as N-methyl pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAc). It was also found that replacing these solvents with the green solvent, ethylene carbonate (EC), would reduce the environmental impact of membrane production by up to 35%. Developing sustainable membrane fabrication techniques using green solvents could thus be highly beneficial.In this thesis, three different pathways were proposed to address sustainability issues in membrane production identified in the LCA study. First, it prompted an investigation into the viability of utilizing three environmentally friendly cyclic carbonate solvents: EC; propylene carbonate (PC); and butylene carbonate (BC) for the production of polyvinylidene fluoride (PVDF) membranes. These solvents are biobased, biodegradable, inexpensive, and readily available on large scales. The study aimed to examine the influence of solvent structure on membrane morphology, polymorphism, and separation performance. It provided valuable insights into the mechanisms governing the formation of pure β-phase PVDF membranes.Non-ionic deep eutectic solvents (NIDES) are a sub-class of ionic liquids that can be synthesized inexpensively using simple heating processes with no pre- or post-treatment. As such, they could be attractive alternative solvents for membrane fabrication. Three NIDES were synthesized and used to dissolve PVDF: N-methylacetamide-acetamide (DES-1); N-methyl acetamide-N-methyl urea (DES-2); and N-methyl acetamide-N,N’-dimethyl urea (DES-3). The favorable performance of the obtained membranes together with the low cost, low toxicity, and simple large-scale synthesis of NIDES makes this an attractive approach for membrane production. Finally, three Dibasic Esters (DBEs) namely dimethyl succinate (DMS), dimethyl glutarate (DMG) and dimethyl adipate (DMA) were introduced as alternative green solvents for PVDF membrane production. DBEs have several desirable properties including biodegradability, non-carcinogenicity, non-corrosiveness, and non-hazardousness. Furthermore, these DBEs are not only more economical compared to hazardous solvents but are also easily accessible in significant quantities, thus increasing their suitability for large-scale industrial membrane manufacturing. Hence, we conducted an assessment of the morphology, properties, and performance of DBEs as a potential solvent alternative for membrane production. To conclude, this thesis provides an improved and advanced understanding of sustainable approaches in polymeric membrane production. By investigating different aspects such as solvent choices and introducing alternative solvents, the research contributes valuable insights to the field and promotes the development of more environmentally friendly and sustainable environment membrane manufacturing processes. 
  •  
5.
  • Khorsand Kheirabad, Atefeh, 1991- (författare)
  • Functional hybrid and composite porous membranes derived from imidazolium-type poly(ionic liquid)
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Poly(ionic liquid)s (PIL)s, as a subclass of polyelectrolytes, are composed of polymeric backbones with ionic liquid (IL)-based species in each repeating unit. Recent studies have deepened the understanding of the PIL concept in terms of characteristics, functions and applications in comparison to classical ILs and traditional polyelectrolytes. During the past two decades, PILs have developed themselves into an interdisciplinary subject among various research areas such as polymer science, materials science, catalysis, separation and sensing. Currently, the chemistry and applications of conventional polyelectrolytes are being expanded forward by the PIL concept. This PhD thesis deals with PIL-based porous hybrid and composite membranes. It is motivated by the growing demand on functional porous polymer membranes, in particularly, porous polyelectrolyte membranes in both industry and academia. By applying PILs as building blocks in membranes, the as-prepared porous PIL membranes combine certain desirable properties of ILs and common polymers with a wider potential to satisfy this demand. As a step further, the incorporation of functional guest substances on a molecular or nanoscale can enable new functionalities of porous membranes and broaden their application scope. The aim of this thesis is to develop synthetic approaches to fabricate porous PIL-based membranes based on hybridization and composition of a cationic PIL and a guest substance, and explore their diverse functions. Herein, fabrication methods based on two mechanisms were proposed and investigated. First, electrostatic complexation between a cationic hydrophobic PIL and a weak poly-/multi-acid. Second, ice-assisted phase separation of a hydrophobic PIL in water when in contact with a multi-acid compound as an ionic crosslinker. In following, task-specific functions were built up in porous PIL membranes via addition of specific metal-containing substances. This thesis content is inherently interdisciplinary, as it combines polymer chemistry and processing, membrane fabrication and materials science to secure its success in implementation, and this thesis advances the design and application scope of porous polyelectrolyte membranes.
  •  
6.
  • Ma, Wenzhong, et al. (författare)
  • Membrane formation by thermally induced phase separation : materials, involved parameters, modeling, current efforts and future directions
  • 2023
  • Ingår i: Journal of Membrane Science. - : Elsevier. - 0376-7388 .- 1873-3123. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermally-induced phase separation (TIPS) is one of the most popular methods considered for membrane preparation. Since its introduction by Castro in 1981, there has been significant progress in understanding, controlling, and implementing TIPS. This review provides a critical and integrative evaluation of the literature in this area that effectively defines the current state-of-the-art. It begins with an overview of the basic principles of TIPS and the used materials (polymers, diluents and additives) paying particular attention to the sustainability of the TIPS process. The subsequent sections examine the parameters affecting the outcome of TIPS technique, the role of mass transfer, and methods for modeling TIPS. This is followed by a discussion of current and potential applications of TIPS membranes. Finally, the review concludes with a discussion of likely future developments and prospects for the TIPS process.
  •  
7.
  • Wang, Xianshu, et al. (författare)
  • Non-solvating fluorosulfonyl carboxylate enables temperature-tolerant lithium metal batteries
  • 2023
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 82, s. 287-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced electrolyte engineering is an important strategy for developing high-efficacy lithium (Li) metal batteries (LMBs). Unfortunately, the current electrolytes limit the scope for creating batteries that perform well over temperature ranges. Here, we present a new electrolyte design that uses fluorosulfonyl carboxylate as a non-solvating solvent to form difluoroxalate borate (DFOB-) anion-rich solvation sheath, to realize high-performance working of temperature-tolerant LMBs. With this optimized electrolyte, favorable SEI and CEI chemistries on Li metal anode and nickel-rich cathode are achieved, respectively, leading to fast Li+ transfer kinetics, dendrite-free Li deposition and suppressed electrolyte deterioration. Therefore, Li||LiNi0.80Co0.15Al0.05O2 batteries with a thin Li foil (50 μm) show a long-term cycling lifespan over 400 cycles at 1 C and a superior capacity retention of 90% after 200 cycles at 0.5 C under 25 ℃. Moreover, this electrolyte extends the operating temperature from -10 to 30 ℃ and significantly improve the capacity retention and Coulombic efficiency of batteries are improved at high temperature (60 ℃). Fluorosulfonyl carboxylates thus have considerable potential for use in high-performance and all-weather LMBs, which broadens the new exploring of electrolyte design.
  •  
8.
  • Wu, Junru, et al. (författare)
  • Unique tridentate coordination tailored solvation sheath towards highly stable lithium metal batteries
  • 2023
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 35:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrolyte optimization by solvent molecule design has been recognized as an effective approach for stabilizing lithium (Li) metal batteries. However, the coordination pattern of Li+ with solvent molecules has been sparsely considered. Here, we report an electrolyte design strategy based on bi/tridentate chelation of Li+ and solvent to tune the solvation structure. As a proof of concept, a novel solvent with multi oxygen coordination sites is demonstrated to facilitate the formation of an anion-aggregated solvation shell, enhancing the interfacial stability and de-solvation kinetics. As a result, the as-developed electrolyte exhibits ultra-stable cycling over 1400 h in symmetric cells with 50 ?m-thin Li foils. When paired with high-loading LiFePO4, full cells maintain 92% capacity over 500 cycles and deliver improved electrochemical performances over a wide temperature range from -10 °C to 60 °C. Furthermore, the concept is validated in a pouch cell (570 mAh), achieving a capacity retention of 99.5% after 100 cycles. This brand-new insight on electrolyte engineering provides guidelines for practical high-performance Li metal batteries. This article is protected by copyright. All rights reserved
  •  
9.
  • Zhao, Yun, et al. (författare)
  • Recycling of sodium-ion batteries
  • 2023
  • Ingår i: Nature Reviews Materials. - : Springer Nature. - 2058-8437. ; 8:9, s. 623-634
  • Forskningsöversikt (refereegranskat)abstract
    • Sodium-ion batteries (SIBs) are promising electrical power sources complementary to lithium-ion batteries (LIBs) and could be crucial in future electric vehicles and energy storage systems. Spent LIBs and SIBs both face many of the same environmental and economic challenges in their recycling, but SIB recycling has a much higher economic barrier. Although LIB recycling can be profitable by recovering high-valued metals of lithium and cobalt, the lower material valuation of spent SIBs diminishes profitability and may hinder industrial recycling. Pre-emptive strategies to facilitate recycling spent SIBs should be made during the early commercialization stage to ensure that SIBs are designed for ease of recycling, low operation costs and optimum efficiency. This Perspective article summarizes the material components of SIBs, discusses strategies for their recycling and outlines the associated challenges and future outlook of SIB recycling. The insights presented should aid scientists and engineers in creating a circular economy for the SIB industry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy