SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tchaplyguine M.) srt2:(2020-2024)"

Sökning: WFRF:(Tchaplyguine M.) > (2020-2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mikkelä, M.-H., et al. (författare)
  • Bismuth-oxide nanoparticles : study in a beam and as deposited
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 26:13, s. 10369-10381
  • Tidskriftsartikel (refereegranskat)abstract
    • Bi2O3 is a promising material for solid-oxide fuel cells (SOFC) due to the high ionic conductivity of some phases. The largest value is reached for its δ-phase, but it is normally stable at temperatures too high for SOFC operation, while nanostructured oxide is believed to have more suitable stabilization temperature. However, to manufacture such a material with a controlled chemical composition is a challenging task. In this work, we investigated the fabrication of nanostructured Bi2O3 films formed by deposition of free Bi-oxide nanoparticles created in situ. The particle-production method was based on reactive sputtering and vapour aggregation. Depending on the fabrication conditions, the nanoparticles contained either a combination of Bi–metal and Bi-oxide, or only Bi-oxide. Prior to deposition, the free particles were probed in the beam – by synchrotron-based photoelectron spectroscopy (PES), which allowed assessing their composition "on the-fly". The nanoparticle films obtained after deposition were studied by PES, scanning electron microscopy, transmission electron microscopy, and electron diffraction. The films' chemical composition, grain dimensions, and crystal structure were probed. Our analysis suggests that our method produced Bi-oxide films in more than one polymorph of Bi2O3.
  •  
2.
  • Tzomos, E., et al. (författare)
  • Ag-oxide signature in Ag 3d photoelectron spectra : A study on free nanoparticles
  • 2023
  • Ingår i: Surface Science. - : ELSEVIER. - 0039-6028 .- 1879-2758. ; 733
  • Tidskriftsartikel (refereegranskat)abstract
    • Over decades the Ag 3d-level binding energy has been puzzling researchers with its unusual sign and value in silver oxides. For the absolute majority of metals, the metal-to-oxide binding energy shifts are positive and depend significantly on the oxidation state, while in Ag-oxides the oxide shift was time after time reported negative, small, and close for the two very different Ag(I) and Ag(III) oxidation states. In the current work, a photoelectron spectroscopy (PES) investigation on the in -situ created free nanoparticles simultaneously containing both metallic silver and silver-oxide parts provided the grounds to reconsider the old consensus on the Ag-oxide shifts. The Ag 3d energies for the metallic and the oxide parts established in the current experimental work allowed estimating a approximate to 1.2 eV positive shift for the realized oxidation state. This estimate was made possible by using a beam of free nanoparticles with finely controlled composition. The PES experiments on such a beam allowed for a continuous and fast renewal of the poorly conducting sample and for a reliable and accurate calibration relative to vacuum. The constant oxide shift observed at several different oxidation conditions, as well as the relatively narrow and symmetric oxide peaks, point to one dominating oxidation state being present in the particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy