SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tengholm Anders) srt2:(2015-2019)"

Sökning: WFRF:(Tengholm Anders) > (2015-2019)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abels, Mia, et al. (författare)
  • CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1928-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart(-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
  •  
3.
  • Alenkvist, Ida (författare)
  • Epac2 signaling at the β-cell plasma membrane
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Secretion of appropriate amounts of insulin from pancreatic β-cells is crucial for glucose homeostasis. The β-cells release insulin in response to glucose and other nutrients, hormones and neurotransmitters, which trigger intracellular signaling cascades, that result in exocytotic fusion of insulin-containing vesicles with the plasma membrane. Increases of the intracellular concentration of calcium ions ([Ca2+]i) trigger exocytosis, whereas the messenger cyclic adenosine monophosphate (cAMP) amplifies various steps of the secretion process. The protein Epac2 mediates some effects of cAMP, but little is known about its regulation in β-cells. In this study, the spatio-temporal dynamics of Epac2 was investigated in insulin-secreting MIN6-cells and primary β-cells using various cell signaling biosensors and live-cell fluorescence microscopy approaches. Increases in the cAMP concentration triggered translocation of Epac2 from the cytoplasm to the plasma membrane. Oscillations of cAMP induced by glucose and the insulin-releasing hormone GLP-1 were associated with cyclic translocation of Epac2. Analyses of Epac2 mutants showed that the high-affinity cyclic nucleotide-binding domain and Ras-association domains were crucial for the translocation, whereas neither the DEP domain, nor the low-affinity cAMP-binding domain were required for membrane binding. However, the latter domain targeted Epac2 to insulin granules at the plasma membrane, which promoted their priming for exocytosis. Depolarization-induced elevations of [Ca2+]i also stimulated Epac2 translocation, but the effects were complex and in the presence of high cAMP concentrations, [Ca2+]i increases often reduced membrane binding. The stimulatory effect of Ca2+ was mediated by increased Ras activity, while the inhibitory effect reflected reduced concentrations of the membrane phospholipid PtdIns(4,5)P2. Anti-diabetic drugs of the sulfonylurea class, suggested to directly activate Epac2, induced translocation indirectly by depolarizing β-cells to increase [Ca2+]i. Epac2 is an activator of Rap GTPases, and its translocation increased Rap activity at the plasma membrane. It is concluded that the subcellular localization of Epac2 is controlled by a complex interplay between cAMP, Ca2+ and PtdIns(4,5)P2 and that the protein controls insulin release by binding to the exocytosis machinery. These results provide new insights into the regulation of β-cell function and may facilitate the development of new anti-diabetic drugs that amplify insulin secretion.
  •  
4.
  • Alenkvist, Ida, et al. (författare)
  • Recruitment of Epac2A to Insulin Granule Docking Sites Regulates Priming for Exocytosis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:10, s. 2610-2622
  • Tidskriftsartikel (refereegranskat)abstract
    • Epac is a cAMP-activated guanine nucleotide exchange factor that mediates cAMP signaling in various types of cells, including -cells, where it is involved in the control of insulin secretion. Upon activation, the protein redistributes to the plasma membrane, but the underlying molecular mechanisms and functional consequences are unclear. Using quantitative high-resolution microscopy, we found that cAMP elevation caused rapid binding of Epac2A to the -cell plasma membrane, where it accumulated specifically at secretory granules and rendered them more prone to undergo exocytosis. cAMP-dependent membrane binding required the high-affinity cyclic nucleotide-binding (CNB) and Ras association domains, but not the disheveled-Egl-10-pleckstrin domain. Although the N-terminal low-affinity CNB domain (CNB-A) was dispensable for the translocation to the membrane, it was critical for directing Epac2A to the granule sites. Epac1, which lacks the CNB-A domain, was recruited to the plasma membrane but did not accumulate at granules. We conclude that Epac2A controls secretory granule release by binding to the exocytosis machinery, an effect that is enhanced by prior cAMP-dependent accumulation of the protein at the plasma membrane.
  •  
5.
  • Gucek, Alenka, et al. (författare)
  • Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis
  • 2019
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here, we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2(-/-) (Rapgef4(-/-)) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.
  •  
6.
  • Korol, Sergiy V, et al. (författare)
  • Functional Characterization of Native, High-Affinity GABAA Receptors in Human Pancreatic β Cells
  • 2018
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100-1000nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D.
  •  
7.
  • Krishnan, Kalaiselvan, 1988- (författare)
  • Studies on molecular mechanisms in calcium signaling and cellular energy consumption
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ion signaling plays fundamental role in cell survival. Na+ and Ca2+ are critical players in ion signaling. Cells spend the major amount of energy to maintain and regulate Na+ and Ca2+ gradients across the cell membrane. Any disruption in cellular energy consumption by plasma membrane ATPases affects ion signaling and vice versa. This thesis is a combination of four separate research studies. In the first study, We measured ATP consumption dynamics of Na+/K+-ATPase using a genetically encoded fluorescent indicator called Perceval HR. we demonstrate that PercevalHR is an excellent tool to visualize ATP:ADP in mammalian cells.In the second study, We studied the role of calcium signaling and TRP channels in angiotensin II type 1 receptor  signaling cascade. We prove that low inhibition of CaV1.2 with physiological and therapeutically relevant concentration of Angiotensin II up regulate AT1R signaling.In the third study, We studied the role of the TRPM5 channel in regulating insulin secretion, and cytoplasmic free calcium concentration in the rat β-cells by usingtriphenyl phosphine oxide, a selective inhibitor of the channel.In the fourth study, We tested whether, the genetically engineered human β-cell line (EndoC-BH1) could be used as models for studying Ca2+signaling in the context of Type II Diabetes. We found that the EndoC-BH1 cells could be a relevant model to study stimulus-secretion coupling and Ca2+ signaling in the human β-cells.
  •  
8.
  • Li, Jia, et al. (författare)
  • Submembrane ATP and Ca2+ kinetics in alpha-cells : unexpected signaling for glucagon secretion
  • 2015
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:8, s. 3379-3388
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytoplasmic ATP and Ca2+ are implicated in current models of glucose's control of glucagon and insulin secretion from pancreatic alpha- and beta-cells, respectively, but little is known about ATP and its relation to Ca2+ in alpha-cells. We therefore expressed the fluorescent ATP biosensor Perceval in mouse pancreatic islets and loaded them with a Ca2+ indicator. With total internal reflection fluorescence microscopy, we recorded subplasma membrane concentrations of Ca2+ and ATP ([Ca2+](pm); [ATP](pm)) in superficial alpha- and beta-cells of intact islets and related signaling to glucagon and insulin secretion by immunoassay. Consistent with ATP's controlling glucagon and insulin secretion during hypo- and hyperglycemia, respectively, the dose-response relationship for glucoseinduced [ATP](pm) generation was left shifted in alpha-cells compared to beta-cells. Both cell types showed [Ca2+](pm) and [ATP](pm) oscillations in opposite phase, probably reflecting energy-consuming Ca2+ transport. Although pulsatile insulin and glucagon release are in opposite phase, [Ca2+](pm) synchronized in the same phase between alpha- and beta-cells. This paradox can be explained by the overriding of Ca2+ stimulation by paracrine inhibition, because somatostatin receptor blockade potently stimulated glucagon release with little effect on Ca2+. The data indicate that an alpha-cell-intrinsic mechanism controls glucagon in hypoglycemia and that paracrine factors shape pulsatile secretion in hyperglycemia.
  •  
9.
  • Mojtaba Ghiasi, Seyed, et al. (författare)
  • The Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 94 is Essential for Proinsulin Handling
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:4, s. 747-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Although endoplasmic reticulum (ER) chaperone binding to mutant proinsulin has been reported, the role of protein chaperones in the handling of wild-type proinsulin is under-investigated. Here, we have explored the importance of glucose regulated protein 94 (GRP94), a prominent ER chaperone known to fold insulin-like growth factors, in proinsulin handling within β-cells. We found that GRP94 co-immunoprecipitated with proinsulin and that inhibition of GRP94 function and/or expression reduced glucose-dependent insulin secretion, shortened proinsulin half-life and lowered intracellular proinsulin and insulin levels. This phenotype was accompanied by post-ER proinsulin misprocessing and higher numbers of enlarged insulin granules that contained amorphic material with reduced immunogold staining for mature insulin. Insulin granule exocytosis was two-fold accelerated but the secreted insulin had diminished bioactivity. Moreover, GRP94 knockdown or knockout in β-cells selectively activated Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK), without increasing apoptosis levels. Finally, GRP94 mRNA was overexpressed in islets from T2D patients. We conclude that GRP94 is a chaperone crucial for proinsulin handling and insulin secretion.
  •  
10.
  • Pietilä, Ilkka, et al. (författare)
  • Temporal Dynamics of VEGFA-Induced VEGFR2/FAK Co-Localization Depend on SHB
  • 2019
  • Ingår i: Cells. - Basel, Switzerland : MDPI. - 2073-4409. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Focal adhesion kinase (FAK) is essential for vascular endothelial growth factor-A (VEGFA)/VEGF receptor-2 (VEGFR2)-stimulated angiogenesis and vascular permeability. We have previously noted that presence of the Src homology-2 domain adapter protein B (SHB) is of relevance for VEGFA-stimulated angiogenesis in a FAK-dependent manner. The current study was conducted in order address the temporal dynamics of co-localization between these components in HEK293 and primary lung endothelial cells (EC) by total internal reflection fluorescence microscopy (TIRF). An early (<2.5 min) VEGFA-induced increase in VEGFR2 co-localization with SHB was dependent on tyrosine 1175 in VEGFR2. VEGFA also enhanced SHB co-localization with FAK. FAK co-localization with VEGFR2 was dependent on SHB since it was significantly lower in SHB deficient EC after VEGFA addition. Absence of SHB also resulted in a gradual decline of VEGFR2 co-localization with FAK under basal (prior to VEGFA addition) conditions. A similar basal response was observed with expression of the Y1175F-VEGFR2 mutant in wild type EC. The distribution of focal adhesions in SHB-deficient EC was altered with a primarily perinuclear location. These live cell data implicate SHB as a key component regulating FAK activity in response to VEGFA/VEGFR2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy