SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teran A) srt2:(2019)"

Sökning: WFRF:(Teran A) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fresard, Laure, et al. (författare)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • Ingår i: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Tidskriftsartikel (refereegranskat)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
2.
  • Jespers, Willem, et al. (författare)
  • QresFEP : An Automated Protocol for Free Energy Calculations of Protein Mutations in Q
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:10, s. 5461-5473
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting the effect of single-point mutations on protein stability or protein-ligand binding is a major challenge in computational biology. Free energy calculations constitute the most rigorous approach to this problem, though the estimation of converged values for amino acid mutations remains challenging. To overcome this limitation, we developed tailored protocols to calculate free energy shifts associated with single-point mutations. We herein describe the QresFEP protocol, which includes an extension of our recent protocols to cover all amino acids mutations, based on the latest versions of the OPLS-AA force field. QresFEP is implemented in an application programming interface framework and the graphic interface QGui, for the molecular dynamics software Q. The complete protocol is benchmarked in several model systems, optimizing a number of sampling parameters and the implementation of Zwanzig's exponential formula and Bennet's acceptance ratio methods. QresFEP shows an excellent performance on estimating the hydration free energies of amino acid side-chain mimics, including their charged analogues. We also examined its performance on a protein-ligand binding problem of pharmaceutical relevance, the antagonism of neuropeptide Y1 G protein-coupled receptor. Here, the calculations show very good agreement with the experimental effect of 16 mutations on the binding of antagonists BIBP3226, in line with our recent applications in this field. Finally, the characterization of 43 mutations of T4-lysozyme reveals the capacity of our protocol to assess variations of the thermal stability of proteins, achieving a similar performance to alternative free energy perturbation (FEP) approaches. In summary, QresFEP is a robust, versatile, and user-friendly computational FEP protocol to examine biochemical effects of single-point mutations with high accuracy.
  •  
3.
  • Moreira, Xoaquín, et al. (författare)
  • Impacts of urbanization on insect herbivory and plant defences in oak trees
  • 2019
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 128:1, s. 113-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO2 emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO2 emissions, changes in leaf chewer damage were not associated with either leaf traits or CO2 levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant-herbivore interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy