SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tesselaar Erik) srt2:(2005-2009)"

Sökning: WFRF:(Tesselaar Erik) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Droog Tesselaar, Erik, 1977- (författare)
  • Assessment of microvascular function by use of transdermal iontophoresis : methodological aspects
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Assessment of the microcirculation is of major importance in understanding the physiology of the vasculature and in assessing te vascular effects of pathological conditions such as diabetes, hypertension and sepsis. Transdermal iontophoresis can be used to non‐invasively introduce vasoactive drugs into the skin. The response to these drugs of the local cutaneous microvasculature can be measured by laser Doppler flowmetry methods. Although these techniques have been used together for over two decades, there are still important methodological issues to be resolved. This work is aimed at optimizing transdermal iontophoresis as a tool for microvascular assessment by focusing on the main methdological issues: non‐specific vasodilatation, drug delivery protocols and analysis of blood flow data.Non‐specific vasodilatation, an increase blood flow during iontophoresis of non‐vasoactive compounds, is an important problem as it interferes with the response to the administered drug. By investigating this effect in healthy volunteers, we found that the extent of the non‐specific response differs between the positive and negative electrode and that it is dependent on the voltage over the skin andon the ionic strength of the vehicle in which the drug is dissolved. We also found that the extent of the non‐specific response could be reduced by applying local anesthetics and by pre‐treatment with antihistamine drugs. These results suggest that non‐specific effects could be mediated by depolarization or hyperpolarisation of cells, triggering neural and histamine related mechanisms that finally lead to vasodilatation of the local microvasculature.To prevent non‐specific effects from occurring during the experiments, our results show that the current strength and the total electric charge during iontophoresis should be limited to 0.02 mA and12 mC, respectively. Furthermore, drug solutions at physiological ionic strengths should be used. Under these conditions, adequate responses to the most commonly used drugs, acetylcholine (ACh) and sodium nitroprusside (SNP), are obtained while no significant non‐specific vasodilatation occurs.The results of our investigations show that blood responses to ACh and SNP applied by a single iontophoretic pulse can well be escribed by conventional dose‐response models, which enables a more powerful analysis and comparison between drugs or possibly patient groups as compared with conventional aalysis methods. Finally, we have incorporated drug transport and physiological response to the local drug concentration during iontophoresis of vasoactve drugs into a single model. Validation of this model using measured responses to ACh and SNP shows that the commonly used assumption that the local drug concentration during iontophoresis is linearly proportional to the electric charge may not be valid.
  •  
2.
  • Henricson, Joakim, 1977- (författare)
  • Assessment of microvascular effects of vasoactive drugs : Methodological in vivo studies in humansbased on iontophoresis
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiovascular disease is the leading cause of death in western societies and endothelial dysfunction is one of the earliest signs seen in the development of such conditions. Thedevelopment of prognostic tools to aid in the prediction of micro- and macrovascular diseasebased on assessment of vascular reactivity is therefore of paramount importance.Transdermal iontophoresis offers a quick, non-invasive and relatively straightforward way todeliver vasoactive substances in order to provoke a vascular response in man. When combined with either laser Doppler flowmetry (LDF) or tissue viability imaging (TiVi) for quantification of these responses the methodology offers a potentially powerful tool forvascular investigations. The technique has, however, not been established in clinical practice yet and is mostly used in experimental settings. The lack of consensus in what data analysistechnique to use, uncertainty concerning the actual drug dose applied, and the difficulties associated with the assessment of responses to vasoconstrictors may have contributed to thisfact. The aim of this thesis is therefore to address these issues and thus facilitate the use and improve the applicability of transdermal iontophoresis for assessment of cutaneous microvascular function.More specifically, a non-linear dose-response model (Emax-model) that is commonly used in in vitro investigations of vascular function was applied to the iontophoresis data. The resultsshow that the Emax-model accurately describes the cutaneous vascular responses totransdermally iontophoresed acetylcholine (ACh) and, sodium nitroprusside (SNP). The Emaxmodelgenerates variables that can be used for quantitative statistical analysis of data andenables a more powerful analysis compared to the methods presently used. It is furtherdemonstrated that the maximal dose effect and vascular responses vary between differentprotocols with the same total iontophoretic charge but with different current strengths anddurations. This finding implies that the assumption that the local drug dose is linearlyproportional to the iontophoretic charge (used for estimation of delivered drug dose to themicrovascular bed) may be inaccurate in in vivo investigations and that there is need for amore refined model.It is also demonstrated that in a vasoconstrictive setting (iontophoresis of noradrenaline andphenylephrine) TiVi is the favourable technique for measuring vascular responses as it issensitive enough to generate data that can be fitted to the Emax-model even without predilatationof the vessels.
  •  
3.
  • Henricson, Joakim, et al. (författare)
  • Assessment of microvascular function by study of the dose‐response effects of iontophoretically applied drugs (acetylcholine and sodium nitroprusside) : Methods and comparison with in vitro studies
  • 2007
  • Ingår i: Microvascular Research. - : Elsevier BV. - 0026-2862 .- 1095-9319. ; 73:2, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Current knowledge about vascular function stems mainly from pharmacological in vitro studies using mounted vascular strips on a strain gauge. We know of no paper that has systematically examined the possibility of assessing the conventional dose–response effects of iontophoresis and laser Doppler investigation of vasoactive substances and compared those relations to data obtained from strips mounted on a strain gauge. We used the vasoactive substances acetylcholine (endothelium dependent) and sodium nitroprusside (endothelium independent) and an antagonist (atropine) to enable further investigations in the receptor physiology of iontophoresis. Dose–response curves from the iontophoresis experiments showed close similarity to those obtained by vascular strips mounted on a strain gauge. The coefficient of variation (CV) of the dose–response factors found in iontophoresis (both inter and intra experimental variability) was low. The iontophoretic effective dose of 50% (ED50) for acetylcholine and nitroprusside had only CVs of 25% and 26%, respectively, compared with 71% and 77% for the vascular strips. Acetylcholine-induced response was antagonized by iontophoresis of atropine. Contrary to expectations, this antagonism was not competitive. The results show that iontophoresis in combination with laser Doppler technology produces reproducible and reliable dose–response curves that picture the vascular effects of vasoactive drugs.
  •  
4.
  • Henricson, Joakim, et al. (författare)
  • Tissue viability imaging : Microvascular response to vasoactive drugs induced by iontophoresis
  • 2009
  • Ingår i: Microvascular Research. - : Elsevier BV. - 0026-2862. ; 78:2, s. 199-205
  • Tidskriftsartikel (refereegranskat)abstract
    • When one is studying the physiology of the cutaneous microcirculation there is a need for relevant non-invasive and versatile techniques. In this study we used a new optical device, the tissue viability imager (TiVi), to map changes in cutaneous microvascular concentrations of red blood cells during iontophoresis of vasoactive substances (noradrenaline (NA) and phenylephrine (Phe) for vasoconstriction and acetylcholine (ACh) and sodium nitroprusside (SNP) for vasodilatation). We aimed to present data both individually and pooled, using a four-variable logistic dose response model that is commonly used in similar in vitro vascular studies. The accuracy of the TiVi was also investigated by calculating the coefficient of variation and comparing it with similar tests previously done using laser Doppler imaging. Tests were also performed using the TiVi and LDPI simultaneously to further compare the two methods. Results showed that the TiVi is capable of quantifying vascular responses to iontophorised noradrenaline and phenylephrine without the need to increase background flow first. Fitting the TiVi data to the dose response model resulted in ED50-values with narrow confidence intervals and acceptable r2 values. Mean ED50-values for the TiVi did not differ significantly from similar values obtained using laser Doppler. Results further seem to suggest that when the blood perfusion increases during vasodilatation in skin the initial phase relies mainly on an increase in red blood cell concentration whereas the further perfusion increase is due to an increase in red blood cell velocity.
  •  
5.
  • Tesselaar (Droog), Erik, et al. (författare)
  • A time–response model for analysis of drug transport and blood flow response during iontophoresis of acetylcholine and sodium nitroprusside
  • 2009
  • Ingår i: Journal of Vascular Research. - Basel, Switzerland : S. Karger. - 1018-1172 .- 1423-0135. ; 46:4, s. 270-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: The analysis of blood flow responses to iontophoresis of vasoactive drugs is often limited to evaluation of maximum responses. In this study, a time-response model is proposed for the blood flow responses to vasoactive drugs applied by iontophoresis. Methods: The microvascular bed is represented as a single compartment with a zero-order influx of the drugs from the electrode and a first-order clearance due to diffusion and blood flow. The blood flow response to the local drug dose is described using the Emax model. Results: The model accurately describes the blood flow responses to acetylcholine and sodium nitroprusside during a single iontophoretic current pulse. There is a significant clearance out of the microvascular bed during iontophoresis which depends on the type of drug administered. Conclusion: The model enables an accurate estimation of response parameters such as ED50 and maximum response, even if the true maximum blood flow is not obtained. The results suggest that due to clearance from the microvascular bed, the local drug dose during a single pulse of current is not linearly proportional to current strength multiplied by pulse duration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy