SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tews Ingo) srt2:(2023)"

Sökning: WFRF:(Tews Ingo) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pang, Peter T. H., et al. (författare)
  • An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙ neutron star to be R = 11.98+0.35−0.40 km.
  •  
2.
  • Ujevic, Maximiliano, et al. (författare)
  • Reverse phase transitions in binary neutron-star systems with exotic-matter cores
  • 2023
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 107:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimessenger observations of binary neutron-star mergers provide a unique opportunity to constrain the dense-matter equation of state. Although it is known from quantum chromodynamics that hadronic matter will undergo a phase transition to exotic forms of matter—e.g., quark matter—the onset density of such a phase transition cannot be computed from first principles. Hence, it remains an open question if such phase transitions occur inside isolated neutron stars or during binary neutron-star mergers, or if they appear at even higher densities that are not realized in the cosmos. In this article, we perform numerical relativity simulations of neutron-star mergers and investigate scenarios in which the onset density of such a phase transition is exceeded in at least one inspiraling binary component. Our simulations reveal that shortly before the merger, it is possible that such stars undergo a “reverse phase transition”—i.e., densities decrease and the quark core inside the star disappears, leaving a purely hadronic star at merger. After the merger, when densities increase once more, the phase transition occurs again and leads, in the cases considered in this work, to the rapid formation of a black hole. We compute the gravitational-wave signal and the mass ejection for our simulations of such scenarios and find clear signatures that are related to the postmerger phase transition—e.g., smaller ejecta masses due to the softening of the equation of state through the quark core formation. Unfortunately, we do not find measurable imprints of the reverse phase transition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy