SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thaysen M) srt2:(2020-2024)"

Sökning: WFRF:(Thaysen M) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Kawahara, R., et al. (författare)
  • Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 18, s. 1304-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics. This analysis presents the results of a community-based evaluation of existing software for large-scale glycopeptide data analysis.
  •  
5.
  •  
6.
  • Dipta, P., et al. (författare)
  • Macrophage-derived secretome is sufficient to confer olanzapine-mediated insulin resistance in human adipocytes
  • 2021
  • Ingår i: Comprehensive Psychoneuroendocrinology. - : Elsevier BV. - 2666-4976. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Olanzapine and Aripiprazole are widely used second-generation antipsychotic drugs. Olanzapine, more than Aripiprazole, leads to considerable metabolic side effects including obesity and diabetes. While the underlying mechanisms are not fully understood, these side effects are likely associated with mild inflammation in the metabolic organs. An in vitro model that accurately recapitulates the metabolic impact of olanzapine and aripiprazole should be useful to elucidate the underlying mechanisms. Methods: We established co-cultures of matured adipocytes derived from the human SGBS cell line and the THP-1 human monocytic cell-derived or primary macrophages to explore the effects of both drugs on the response to insulin. Results: Olanzapine, but not aripiprazole induced insulin resistance in SGBS adipocytes only when co-cultured with THP-1 or primary macrophages, polarized either into M0, M1 or M2. Noteworthy, M2 macrophages induced olanzapine-dependent insulin resistance in the absence of induction of pro-inflammatory cytokines. Insulin resistance by olanzapine was stronger than induced by high concentration of pro-inflammatory cytokines even in combinations, suggesting the contribution of factors other than the classical inflammatory cytokines to promote insulin resistance in adipocytes by olanzapine. Conclusion: Macrophage/adipocyte co-cultures recapitulate the features of olanzapine-induced insulin resistance and implicate the existence of yet unknown factors in mediating this effect.
  •  
7.
  • Venkatakrishnan, Vignesh, 1987, et al. (författare)
  • Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery
  • 2020
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 295:36, s. 12648-12660
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein glycosylation is essential to trafficking and immune functions of human neutrophils. During granulopoiesis in the bone marrow, distinct neutrophil granules are successively formed. Distinct receptors and effector proteins, many of which are glycosylated, are targeted to each type of granule according to their time of expression, a process called "targeting by timing." Therefore, these granules are time capsules reflecting different times of maturation that can be used to understand the glycosylation process during granulopoiesis. Herein, neutrophil subcellular granules were fractionated by Percoll density gradient centrifugation, andN- andO-glycans present in each compartment were analyzed by LC-MS. We found abundant paucimannosidicN-glycans and lack ofO-glycans in the early-formed azurophil granules, whereas the later-formed specific and gelatinase granules and secretory vesicles contained complexN-andO-glycans with remarkably elongatedN-acetyllactosamine repeats with Lewis epitopes. Immunoblotting and histochemical analysis confirmed the expression of Lewis X and sialyl-Lewis X in the intracellular granules and on the cell surface, respectively. Many glycans identified are unique to neutrophils, and their complexity increased progressively from azurophil granules to specific granules and then to gelatinase granules, suggesting temporal changes in the glycosylation machinery indicative of "glycosylation by timing" during granulopoiesis. In summary, this comprehensive neutrophil granule glycome map, the first of its kind, highlights novel granule-specific glycosylation features and is a crucial first step toward a better understanding of the mechanisms regulating protein glycosylation during neutrophil granulopoiesis and a more detailed understanding of neutrophil biology and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy