SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thiagarajan Balasubramanian) srt2:(2020-2023)"

Sökning: WFRF:(Thiagarajan Balasubramanian) > (2020-2023)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agåker, Marcus, et al. (författare)
  • A five-axis parallel kinematic mirror unit for soft X-ray beamlines at MAX IV
  • 2020
  • Ingår i: Journal of Synchrotron Radiation. - : INT UNION CRYSTALLOGRAPHY. - 0909-0495 .- 1600-5775. ; 27, s. 262-271
  • Tidskriftsartikel (refereegranskat)abstract
    • With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17-35 mu rad angularly depending on the mirror chamber dimensions.
  •  
2.
  • Belopolski, Ilya, et al. (författare)
  • Observation of a linked-loop quantum state in a topological magnet
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 604:7907, s. 647-652
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state1–13. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids5, magnets6,7, the quantum Hall effect3,8, topological insulators9,10, Weyl semimetals11–13 and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet14–20. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material’s three-torus, T3, bulk Brillouin zone. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. We further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk–boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter.
  •  
3.
  • Curcio, Davide, et al. (författare)
  • Current-driven insulator-to-metal transition without Mott breakdown in Ca2RuO4
  • 2023
  • Ingår i: Physical Review B. - 2469-9950. ; 108:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrical control of a material's conductivity is at the heart of modern electronics. Conventionally, this control is achieved by tuning the density of mobile charge carriers. A completely different approach is possible in Mott insulators such as Ca2RuO4, where an insulator-to-metal transition (IMT) can be induced by a weak electric field or current. While the driving force of the IMT is poorly understood, it has been thought to be a breakdown of the Mott state. Using in operando angle-resolved photoemission spectroscopy, we show that this is not the case: The current-induced conductivity is caused by the formation of in-gap states with only a minor reorganization of the Mott state. Electronic structure calculations show that these in-gap states form at the boundaries of structural domains that emerge during the IMT. At such boundaries, the overall gap is drastically reduced, even if the structural difference between the domains is small and the individual domains retain their Mott character. The inhomogeneity of the sample is thus key to understanding the IMT, as it leads to a nonequilibrium semimetallic state that forms at the interface of Mott domains.
  •  
4.
  • John Mukkattukavil, Deepak, 1993- (författare)
  • Resonant Inelastic X-ray Scattering Studies on Quasi-Two-Dimensional Superconducting Materials
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Unconventional superconductivity is one of the many fascinating research areas of condensed matter physics. Understanding the superconducting pairing mechanism and its connection with other competing states remains unclear. This thesis investigates electronic transitions, charge, and spin fluctuations of various single-crystalline superconductors using a combination of x-ray absorption, x-ray emission, and resonant inelastic x-ray scattering techniques. Room temperature x-ray absorption, x-ray emission, and partial fluorescence yield measurements were carried out on LaPt2Si2 single crystal at the Si 2p and La 4d edges. Atomic-like transitions from La 4d to 4f are observed in x-ray absorption and x-ray emission measurements. The x-ray emission spectrum of LaPt2Si2 at the Si 2p edge is compared to the Si p and d local partial density of states. Resonant inelastic x-ray scattering measurements on YFe2Ge2 single crystal are also presented in this thesis. Magnon dispersion in YFe2Ge2 crystal along (h,0) and (h,h) directions are extracted from resonant inelastic x-ray scattering spectra and inelastic neutron scattering experiments. The magnon dispersion is fitted with the dispersion relation for a square lattice using the nearest and next-nearest neighbor exchange interaction. In YFe2Ge2, the ferromagnetic exchange interaction is higher than the antiferromagnetic interaction. High-resolution resonant inelastic x-ray scattering spectra were measured on La1.675Eu0.2Sr0.125CuO4 superconductor at various temperatures. Charge density fluctuations with shorter correlation lengths have been shown to exist above the structural transition up to 200 K in La1.675Eu0.2Sr0.125CuO4. Phonon dispersion relation has also been mapped from high-resolution resonant inelastic x-ray scattering spectra. Softening of optical phonon mode in La1.675Eu0.2Sr0.125CuO4 is observed at low and high temperatures coinciding with the charge density wave vector.
  •  
5.
  • Karakachian, Hrag, et al. (författare)
  • One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons
  • 2020
  • Ingår i: Nature Communications. - : NATURE RESEARCH. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures. Angle-resolved photoelectron spectroscopy (ARPES) and scanning tunneling spectroscopy measurements reveal the development of a width-dependent semiconducting gap driven by quantum confinement effects. Furthermore, ARPES demonstrates an ideal one-dimensional electronic behavior that is realized in a graphene-based environment, consisting of well-resolved subbands, dispersing and non-dispersing along and across the ribbons respectively. Our experimental findings, coupled with theoretical tight-binding calculations, set the grounds for a deeper exploration of quantum confinement phenomena and may open intriguing avenues for new low-power electronics. Here, the authors investigate armchair graphene nanoribbons by angle-resolved photoelectron spectroscopy, and show the development of a width-dependent semiconducting gap driven by quantum confinement effects, and an ideal one-dimensional electronic behaviour.
  •  
6.
  • Karakachian, Hrag, et al. (författare)
  • Periodic Nanoarray of Graphene pn-Junctions on Silicon Carbide Obtained by Hydrogen Intercalation
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley-V C H Verlag GMBH. - 1616-301X .- 1616-3028. ; 32:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene pn-junctions offer a rich portfolio of intriguing physical phenomena. They stand as the potential building blocks for a broad spectrum of future technologies, ranging from electronic lenses analogous to metamaterials in optics, to high-performance photodetectors important for a variety of optoelectronic applications. The production of graphene pn-junctions and their precise structuring at the nanoscale remains to be a challenge. In this work, a scalable method for fabricating periodic nanoarrays of graphene pn-junctions on a technologically viable semiconducting SiC substrate is introduced. Via H-intercalation, 1D confined armchair graphene nanoribbons are transformed into a single 2D graphene sheet rolling over 6H-SiC mesa structures. Due to the different surface terminations of the basal and vicinal SiC planes constituting the mesa structures, different types of charge carriers are locally induced into the graphene layer. Using angle-resolved photoelectron spectroscopy, the electronic band structure of the two graphene regions are selectively measured, finding two symmetrically doped phases with p-type being located on the basal planes and n-type on the facets. The results demonstrate that through a careful structuring of the substrate, combined with H-intercalation, integrated networks of graphene pn-junctions could be engineered at the nanoscale, paving the way for the realization of novel optoelectronic device concepts.
  •  
7.
  • Li, Cong, et al. (författare)
  • Coexistence of two intertwined charge density waves in a kagome system
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials with a kagome lattice structure display a wealth of intriguing magnetic properties due to their geometric frustration and intrinsically flat band structure. Recently, topological and superconducting states have also been observed in kagome systems. The kagome lattice may also host a "breathing" mode that leads to charge density wave (CDW) states, if there is strong electron-phonon coupling, electron-electron interaction, or external excitation of the material. This "breathing" mode can give rise to candidate distortions such as the star of David (SoD) or its inverse structure [trihexagonal (TrH)]. To date, in most materials, only a single type of distortion has been observed. Here, we present angle-resolved photoemission spectroscopy measurements on the kagome superconductor CsV3Sb5 at multiple temperatures and photon energies to reveal the nature of the CDW in this material. It is shown that CsV3Sb5 displays two intertwined CDW orders corresponding to the SoD and TrH distortions. These two distinct types of distortions are stacked along the c direction to form a three-dimensional CDW order where the two 2-fold CDWs are phase shifted along the c axis. The presented results provide not only key insights into the nature of the unconventional CDW order in CsV3Sb5, but also an important reference for further studies on the relationship between the CDW and superconducting order.
  •  
8.
  • Li, Cong, et al. (författare)
  • Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics. Here, using angle-resolved photoemission spectroscopy, we provide an example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the emergence of new Weyl fermions in the ferrimagnetic state. Our results establish NdAlSi as a magnetic Weyl semimetal and provide an experimental observation of ferrimagnetic regulation of Weyl fermions in condensed matter.
  •  
9.
  • Marković, Igor, et al. (författare)
  • Electronically driven spin-reorientation transition of the correlated polar metal Ca3Ru2O7
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:27, s. 15524-15529
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of Ca3Ru2O7, a 4d oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spinreorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin- orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.
  •  
10.
  • Mazzola, Federico, et al. (författare)
  • The sub-band structure of atomically sharp dopant profiles in silicon
  • 2020
  • Ingår i: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The downscaling of silicon-based structures and proto-devices has now reached the single-atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic-scale device fabrication is the so-called Si:P δ-layer, consisting of an ultra-dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, it is on the Si:P platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the Si:P δ-layer platform. In this work, we use high-resolution angle-resolved photoemission spectroscopy to reveal the structure of the electronic states which exist because of the high dopant density of the Si:P δ-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight-binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the band structure has important implications for quantum proto-devices which are built on the Si:P δ-layer platform.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy