SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thom K) srt2:(2020-2022)"

Sökning: WFRF:(Thom K) > (2020-2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rajewsky, N., et al. (författare)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Tidskriftsartikel (refereegranskat)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
2.
  • Thom, Jasmine K., et al. (författare)
  • Selecting tree species with high transpiration and drought avoidance to optimise runoff reduction in passive irrigation systems
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 812
  • Tidskriftsartikel (refereegranskat)abstract
    • Rainfall in cities can generate large volumes of stormwater runoff which degrades receiving waterways. Irrigating trees with runoff (passive irrigation) has the potential to increase transpiration and contribute to stormwater management by reducing runoff received by downstream waterways, but the stochastic nature of rainfall may expose trees with high transpiration to drought stress. We hypothesized that for success in passive irrigation systems, tree species should exhibit i) high maximum transpiration rates under well-watered conditions, ii) drought avoidance between rainfall events, and iii) high recovery of transpiration with rainfall following a drought. We assessed 13 commonly planted urban tree species in Melbourne, Australia against three metrics representing these behaviours (crop factor, hydroscape area, and transpiration recovery, respectively) in a glasshouse experiment. To aid species selection, we also investigated the relationships between these three metrics and commonly measured plant traits, including leaf turgor loss point, wood density, and sapwood to leaf area ratio (Huber value). Only one species (Tristaniopsis laurina) exhibited a combination of high crop factor (>1.1 mm mm−1 d−1) indicating high transpiration, small hydroscape area (<3 MPa2) indicating drought avoidance, and high transpiration recovery (>85%) following water deficit. Hence, of the species measured, it had the greatest potential to reduce runoff from passive irrigation systems while avoiding drought stress. Nevertheless, several other species showed moderate transpiration, hydroscape areas and transpiration recovery, indicating a balanced strategy likely suitable for passive irrigation systems. Huber values were negatively related to crop factor and transpiration recovery and may therefore be a useful tool to aid species selection. We propose that selecting tree species with high transpiration rates that can avoid drought and recover well could greatly reduce stormwater runoff, while supporting broader environmental benefits such as urban cooling in cities.
  •  
3.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Phelan, Suzanne, et al. (författare)
  • One-year postpartum anthropometric outcomes in mothers and children in the LIFE-Moms lifestyle intervention clinical trials
  • 2020
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 44, s. 57-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/objectives: Excess gestational weight gain (GWG) is a risk factor for maternal postpartum weight retention and excessive neonatal adiposity, especially in women with overweight or obesity. Whether lifestyle interventions to reduce excess GWG also reduce 12-month maternal postpartum weight retention and infant weight-for-length z score is unknown. Randomized controlled trials from the LIFE-Moms consortium investigated lifestyle interventions that began in pregnancy and tested whether there was benefit through 12 months on maternal postpartum weight retention (i.e., the difference in weight from early pregnancy to 12 months) and infant-weight-for-length z scores. Subjects/methods: In LIFE-Moms, women (N = 1150; 14.1 weeks gestation at enrollment) with overweight or obesity were randomized within each of seven trials to lifestyle intervention or standard care. Individual participant data were combined and analyzed using generalized linear mixed models with trial entered as a random effect. The 12-month assessment was completed by 83% (959/1150) of women and 84% (961/1150) of infants. Results: Compared with standard care, lifestyle intervention reduced postpartum weight retention (2.2 ± 7.0 vs. 0.7 ± 6.2 kg, respectively; difference of −1.6 kg (95% CI −2.5, −0.7; p = 0.0003); the intervention effect was mediated by reduction in excess GWG, which explained 22% of the effect on postpartum weight retention. Lifestyle intervention also significantly increased the odds (OR = 1.68 (95% CI, 1.26, 2.24)) and percentage of mothers (48.2% vs. 36.2%) at or below baseline weight at 12 months postpartum (yes/no) compared with standard care. There was no statistically significant treatment group effect on infant anthropometric outcomes at 12 months. Conclusions: Compared with standard care, lifestyle interventions initiated in pregnancy and focused on healthy eating, increased physical activity, and other behavioral strategies resulted in significantly less weight retention but similar infant anthropometric outcomes at 12 months postpartum in a large, diverse US population of women with overweight and obesity.
  •  
5.
  • Redman, Leanne M., et al. (författare)
  • Attenuated early pregnancy weight gain by prenatal lifestyle interventions does not prevent gestational diabetes in the LIFE-Moms consortium
  • 2021
  • Ingår i: Diabetes Research and Clinical Practice. - : Elsevier BV. - 0168-8227. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To examine the effect of lifestyle (diet and physical activity) interventions on the prevalence of GDM, considering the method of GDM ascertainment and its association with early pregnancy characteristics and maternal and neonatal outcomes in the LIFE-Moms consortium. Methods: LIFE-Moms evaluated the effects of lifestyle interventions to optimize gestational weight gain in 1148 pregnant women with BMI ≥ 25 kg/m2 and without known diabetes at enrollment, compared with standard care. GDM was assessed between 24 and 31-weeks gestation by a 2-hour, 75-gram OGTT or by local clinical practice standards. Results: Lifestyle interventions initiated prior to 16 weeks reduced early excess GWG compared with standard care (0.35 ± 0.24 vs 0.43 ± 0.26 kg per week, p=<0.0001) but did not affect GDM diagnosis (11.1% vs 11.6%, p = 0.91). Using the 75-gram, 2-hour OGTT, 13. 0% of standard care and 11.0% of the intervention group had GDM by the IADPSG criteria (p = 0.45). The ‘type of diagnostic test’ did not change the result (p = 0.86). Women who developed GDM were significantly heavier, more likely to have obesity, and more likely to have dysglycemia at baseline. Conclusion: Moderate-to-high intensity lifestyle interventions grounded in behavior change theory initiated between 9 and 16-weeks gestation did not affect the prevalence of GDM despite reducing early GWG. Clinicaltrials.gov: NCT01545934, NCT01616147, NCT01771133, NCT01631747, NCT01768793, NCT01610752, NCT01812694.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy