SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thor Stefan) srt2:(2015-2019)"

Sökning: WFRF:(Thor Stefan) > (2015-2019)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pattaro, Cristian, et al. (författare)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
2.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
3.
  • Allan, Douglas W., et al. (författare)
  • Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification
  • 2015
  • Ingår i: WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY. - : Wiley. - 1759-7684. ; 4:5, s. 505-528
  • Forskningsöversikt (refereegranskat)abstract
    • The broad range of tissue and cellular diversity of animals is generated to a large extent by the hierarchical deployment of sequence-specific transcription factors and co-factors (collectively referred to as TFs herein) during development. Our understanding of these developmental processes has been facilitated by the recognition that the activities of many TFs can be meaningfully described by a few functional categories that usefully convey a sense for how the TFs function, and also provides a sense for the regulatory organization of the developmental processes in which they participate. Here, we draw on examples from studies in Caenorhabditis elegans, Drosophila melanogaster, and vertebrates to discuss how the terms spatial selector, temporal selector, tissue/cell type selector, terminal selector and combinatorial code may be usefully applied to categorize the activities of TFs at critical steps of nervous system construction. While we believe that these functional categories are useful for understanding the organizational principles by which TFs direct nervous system construction, we however caution against the assumption that a TFs function can be solely or fully defined by any single functional category. Indeed, most TFs play diverse roles within different functional categories, and their roles can blur the lines we draw between these categories. Regardless, it is our belief that the concepts discussed here are helpful in clarifying the regulatory complexities of nervous system development, and hope they prove useful when interpreting mutant phenotypes, designing future experiments, and programming specific neuronal cell types for use in therapies.
  •  
4.
  • Andersen, Thomas, et al. (författare)
  • C-X-C Ligand 16 Is an Independent Predictor of Cardiovascular Death and Morbidity in Acute Coronary Syndromes
  • 2019
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1079-5642 .- 1524-4636. ; 39:11, s. 2402-2410
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:The chemokine CXCL16 (C-X-C motif ligand 16) is a scavenger receptor for OxLDL (oxidized low-density lipoproteins) and involved in inflammation at sites of atherosclerosis. This study aimed to investigate the association of CXCL16 with clinical outcome in patients with acute coronary syndrome.Approach and Results:Serial measurements of CXCL16 were performed in a subgroup of 5142 patients randomized in the PLATO trial (Platelet Inhibition and Patient Outcome). Associations between CXCL16 and a composite of cardiovascular death, spontaneous myocardial infarction or stroke, and the individual components were assessed by multivariable Cox regression analyses. The hazard ratio per 50% increase in admission levels of CXCL16 analyzed as continuous variable was 1.64 (95% CI, 1.44-1.88), P<0.0001. This association remained statistically significant after adjustment for randomized treatment, clinical variables, CRP (C-reactive protein), leukocytes, cystatin C, NT-proBNP (N-terminal pro-brain natriuretic peptide), troponin T, GDF-15 (growth differentiation factor 15), and other biomarkers; hazard ratio 1.23 (1.05-1.45), P=0.0126. The admission level of CXCL16 was independently associated with cardiovascular death (1.50 [1.17-1.92], P=0.0014) but not with ischemic events alone, in fully adjusted analyses. No statistically independent association was found between CXCL16 measured at 1 month, or change in CXCL16 from admission to 1 month, and clinical outcomes.Conclusions:In patients with acute coronary syndrome, admission level of CXCL16 is independently related to adverse clinical outcomes, mainly driven by an association to cardiovascular death. Thus, CXCL16 measurement may enhance risk stratification in patients with this condition.
  •  
5.
  • Arefin, Md Badrul, et al. (författare)
  • Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay
  • 2019
  • Ingår i: Cell Reports. - Cambridge, United States : CELL PRESS. - 2211-1247. ; 29:11, s. 3636-3651.e3
  • Tidskriftsartikel (refereegranskat)abstract
    • In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
  •  
6.
  • Ayres Pereira, Marina, et al. (författare)
  • Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1
  • 2016
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells.
  •  
7.
  • Bahrampour, Shahrzad, et al. (författare)
  • Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program
  • 2019
  • Ingår i: PLoS biology. - : PUBLIC LIBRARY SCIENCE. - 1544-9173 .- 1545-7885. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • During central nervous system (CNS) development, genetic programs establish neural stem cells and drive both stem and daughter cell proliferation. However, the prominent anterior expansion of the CNS implies anterior-posterior (A-P) modulation of these programs. In Drosophila, a set of neural stem cell factors acts along the entire A-P axis to establish neural stem cells. Brain expansion results from enhanced stem and daughter cell proliferation, promoted by a Polycomb Group (PcG)-amp;gt;Homeobox (Hox) homeotic network. But how does PcG-amp;gt;Hox modulate neural-stem-cell-factor activity along the A-P axis? We find that the PcG-amp;gt;Hox network creates an A-P expression gradient of neural stem cell factors, thereby driving a gradient of proliferation. PcG mutants can be rescued by misexpression of the neural stem cell factors or by mutation of one single Hox gene. Hence, brain expansion results from anterior enhancement of core neural-stem-cell-factor expression, mediated by PcG repression of brain Hox expression.
  •  
8.
  • Bahrampour, Shahrzad, et al. (författare)
  • Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System
  • 2016
  • Ingår i: G3. - : Genetics Society of America. - 2160-1836. ; 6:10, s. 3229-3239
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paf1 protein complex (Paf1C) is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2)/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila. Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila. We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9. We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila.
  •  
9.
  • Bahrampour, Shahrzad (författare)
  • Genetic mechanisms regulating proliferation and cell specification in the Drosophila embryonic CNS
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The central nervous system (CNS) consists of an enormous number of cells, and large cellular variance, integrated into an elaborate network. The CNS is the most complex animal organ, and therefore its establishment must be controlled by many different genetic programs. Considering the high level of complexity in the human CNS, addressing issues related to human neurodevelopment represents a major challenge. Since comparative studies have revealed that neurodevelopmental programs are well conserved through evolution, on both the genetic and functional levels, studies on invertebrate neurodevelopmental programs are often translatable to vertebrates. Indeed, the basis of our current knowledge about vertebrate CNS development has been greatly aided by studies on invertebrates, and in particular on the Drosophila melanogaster (fruit fly) model system.This thesis attempted to identify novel genes regulating neural cell specification and proliferation in the CNS, using the Drosophila model system. Moreover, I aimed to address how those genes govern neural progenitor cells (neuroblasts; NBs) to obtain/maintain their stemness identity and proliferation capacity, and how they drive NBs through temporal windows and series of programmed asymmetric division, which gradually reduces their stemness identity in favor of neural differentiation, resulting in appropriate lineage progression. In the first project, we conducted a forward genetic screen in Drosophila embryos, aimed at isolating genes involved in regulation of neural proliferation and specification, at the single cell resolution. By taking advantage of the restricted expression of the neuropeptide FMRFa in the last-born cell of the NB lineage 5-6T, the Ap4 neuron, we could monitor the entire lineage progression. This screen succeeded in identifying 43 novel genes controlling different aspects of CNS development. One of the genes isolated, Ctr9, displayed extra Ap4/FMRFa neurons. Ctr9 encodes a component of the RNA polymerase II complex Paf1, which is involved in a number of transcriptional processes. The Paf1C, including Ctr9, is highly conserved from yeast to human, and in the past couple of years, its importance for transcription has become increasingly appreciated. However, studies in the Drosophila system have been limited. In the screen, we isolated the first mutant of Drosophila Ctr9 and conducted the first detailed phenotypic study on its function in the Drosophila embryonic CNS. Loss of function of Ctr9 leads to extra NB numbers, higher proliferation ratio and lower expression of neuropeptides. Gene expression analysis identified several other genes regulated by Ctr9, which may explain the Ctr9 mutant phenotypes. In summary, we identified Ctr9 as an essential gene for proper CNS development in Drosophila, and this provides a platform for future study on the Drosophila Paf1C. Another interesting gene isolated in the screen was worniou (wor), a member of the Snail family of transcription factors. In contrast to Ctr9, whichdisplayed additional Ap4/FMRFa neurons, wor mutants displayed a loss of these neurons. Previous studies in our group have identified many genes acting to stop NB lineage progression, but how NBs are pushed to proliferate and generate their lineages was not well known. Since wor may constitute a “driver” of proliferation, we decided to study it further. Also, we identified five other transcription factors acting together with Wor as pro-proliferative in both NBs and their daughter cells. These “drivers” are gradually replaced by the previously identified late-acting “stoppers.” Early and late factors regulate each other and the cell cycle, and thereby orchestrate proper neural lineage progression.
  •  
10.
  • Bahrampour, Shahrzad, et al. (författare)
  • Neural Lineage Progression Controlled by a Temporal Proliferation Program.
  • 2017
  • Ingår i: Developmental Cell. - : Cell Press. - 1534-5807 .- 1878-1551. ; 43:3, s. 332-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.less thanbr /greater than (Copyright © 2017 Elsevier Inc. All rights reserved.)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45
Typ av publikation
tidskriftsartikel (34)
doktorsavhandling (8)
bokkapitel (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Thor, Stefan (21)
Bahrampour, Shahrzad (7)
Hammarström, Per (3)
Ridker, Paul M. (3)
Thor, Göran (3)
Ueland, Thor (3)
visa fler...
Wallentin, Lars, 194 ... (3)
Bertilsson, Maria (3)
Becker, Richard C. (3)
Thor, Stefan, 1964- (3)
Siegbahn, Agneta, 19 ... (3)
Spribille, Toby (3)
Gunnar, Erika (3)
Storey, Robert F. (3)
Åkerblom, Axel, 1977 ... (3)
Michelsen, Annika E. (3)
Kontny, Frederic (3)
Bivik Stadler, Carol ... (3)
Aspelund, Thor (3)
Aukrust, Pål (2)
Nilsson, Peter (2)
Imboden, Medea (2)
Probst-Hensch, Nicol ... (2)
Brenner, Hermann (2)
Svensson, Måns (2)
Rosengren, Annika, 1 ... (2)
Johansson, Åsa (2)
Hu, Frank B. (2)
Chasman, Daniel I. (2)
Chu, Audrey Y (2)
Kähönen, Mika (2)
Lehtimäki, Terho (2)
Hansson, Stefan (2)
Gieger, Christian (2)
Waldenberger, Melani ... (2)
Jonsson, Maria (2)
Gyllensten, Ulf (2)
Himmelmann, Anders (2)
Metspalu, Andres (2)
Tuovinen, Veera (2)
Pramstaller, Peter P ... (2)
James, Stefan K., 19 ... (2)
Schmidt, Reinhold (2)
Schmidt, Helena (2)
Pokrzywa, Malgorzata (2)
Arefin, Md Badrul (2)
Westberg, Martin (2)
Rivadeneira, Fernand ... (2)
Knutsson, Tommy (2)
Koenig, Wolfgang (2)
visa färre...
Lärosäte
Linköpings universitet (30)
Uppsala universitet (9)
Lunds universitet (7)
Göteborgs universitet (5)
Karolinska Institutet (4)
Sveriges Lantbruksuniversitet (4)
visa fler...
Linnéuniversitetet (2)
Umeå universitet (1)
Stockholms universitet (1)
Jönköping University (1)
Södertörns högskola (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (44)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (23)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy