SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thornton Claire) srt2:(2015-2019)"

Sökning: WFRF:(Thornton Claire) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baburamani, Ana A, et al. (författare)
  • Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury.
  • 2015
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 16:9, s. 22509-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury.
  •  
2.
  • Fleiss, Bobbi, et al. (författare)
  • The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia.
  • 2015
  • Ingår i: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 37:(4-5), s. 363-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Neonatal encephalopathy (NE) is a leading cause of childhood death and disability in term infants. Treatment options for perinatal brain injury are limited and developing therapies that target multiple pathways within the pathophysiology of NE are of great interest. Pifithrin-µ (PFT-µ) is a drug with striking neuroprotective abilities in a preclinical model of hypoxia-ischemia (HI)-induced NE wherein cell death is a substantial cause of injury. Work from neurons and tumor cells reports that PFT-µ is able to inhibit p53 binding to the mitochondria, heat shock protein (HSP)-70 substrate binding and activation of the NF-kB pathway. The purpose of this study is to understand whether the neuroprotective effects of PFT-µ also include direct effects on microglia. We utilized the microglial cell line, BV2, and we studied the dose-dependent effect of PFT-µ on M1-like and M2-like phenotype using qRT-PCR and Western blotting, including the requirement for the presence of p53 or HSP-70 in these effects. We also assessed phagocytosis and the effects of PFT-µ on genes within metabolic pathways related to phenotype. We noted that PFT-µ robustly reduced the M1-like (lipopolysaccharide, LPS-induced) BV2 response, spared the LPS-induced phagocytic ability of BV2 and had no effect on the genes related to metabolism and that effects on phenotype were partially dependent on the presence of HSP-70 but not p53. This study demonstrates that the neuroprotective effects of PFT-µ in HI-induced NE may include an anti-inflammatory effect on microglia and adds to the evidence that this drug might be of clinical interest for the treatment of NE. © 2015 S. Karger AG, Basel.
  •  
3.
  • Koning, Gabriella, et al. (författare)
  • Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection.
  • 2019
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 39:6, s. 1038-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium sulphate (MgSO4) given to women in preterm labor reduces cerebral palsy in their offspring but the mechanism behind this protection is unclear, limiting its effective, safe clinical implementation. Previous studies suggest that MgSO4 is not neuroprotective if administered during or after the insult, so we hypothesised that MgSO4 induces preconditioning in the immature brain. Therefore, we administered MgSO4 at various time-points before/after unilateral hypoxia-ischemia (HI) in seven-day-old rats. We found that MgSO4 treatment administered as a bolus between 6 days and 12h prior to HI markedly reduced the brain injury, with maximal protection achieved by 1.1mg/g MgSO4 administered 24h before HI. As serum magnesium levels returned to baseline before the induction of HI, we ascribed this reduction in brain injury to preconditioning. Cerebral blood flow was unaffected, but mRNAs/miRNAs involved in mitochondrial function and metabolism were modulated by MgSO4. Metabolomic analysis (H+-NMR) disclosed that MgSO4 attenuated HI-induced increases in succinate and prevented depletion of high-energy phosphates. MgSO4 pretreatment preserved mitochondrial respiration, reducing ROS production and inflammation after HI. Therefore, we propose that MgSO4 evokes preconditioning via induction of mitochondrial resistance and attenuation of inflammation.
  •  
4.
  • Koning, Gabriella, et al. (författare)
  • Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxia-ischemia.
  • 2018
  • Ingår i: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. - : Wiley. - 1873-474X. ; 70, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain injury in preterm infants represents a substantial clinical problem associated with development of motor impairment, cognitive deficits and psychiatric problems. According to clinical studies, magnesium sulphate (MgSO4) given to women in preterm labor reduces the risk of cerebral palsy in the offspring but the mechanisms behind its neuroprotective effects are still unclear. Our aim was to explore whether MgSO4 induces tolerance (preconditioning) in the preterm rodent brain. For this purpose we established a model of perinatal hypoxia-ischemia (HI) in postnatal day 4 rats and also applied a recently developed postnatal day 5 mouse model of perinatal brain injury.Postnatal day 4 Wistar rats were exposed to unilateral carotid artery ligation followed by 60, 70 or 80min of hypoxia (8% O2). On postnatal day 11, brains were collected and macroscopically visible damage as well as white and grey matter injury was examined using immunohistochemical staining. Once the model had been established, a possible preconditioning protection induced by a bolus MgSO4 injection prior to 80min HI was examined 7days after the insult. Next, a MgSO4 bolus was injected in C57Bl6 mice on PND 4 followed by exposure to unilateral carotid artery ligation and hypoxia, (10% O2) for 70min on PND 5. Brains were collected 7days after the insult and examined with immunohistochemistry for grey and white matter injury.In rats, a 60min period of hypoxia resulted in very few animals with brain injury and although 70min of hypoxia resulted in a higher percentage of injured animals, the brains were marginally damaged. An 80min exposure of hypoxia caused cortical tissue damage combined with hippocampal atrophy and neuronal loss in the C3 hippocampal layer. In the rat model, MgSO4 (1.1mg/g administered i.p. 24h prior to the induction of HI, resulting in a transient serum Mg2+ concentration elevation to 4.1±0.2mmol/l at 3h post i.p. injection) reduced brain injury by 74% in grey matter and 64% in white matter. In the mouse model, MgSO4 (0.92mg/g) i.p. injection given 24h prior to the HI insult resulted in a Mg2+ serum concentration increase reaching 2.7±0.3mmol/l at 3h post injection, which conferred a 40% reduction in grey matter injury.We have established a postnatal day 4 rat model of HI for the study of preterm brain injury. MgSO4 provides a marked preconditioning protection both in postnatal day 4 rats and in postnatal day 5 mice.
  •  
5.
  • Thornton, Claire, et al. (författare)
  • Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury
  • 2018
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 592:5, s. 812-830
  • Forskningsöversikt (refereegranskat)abstract
    • Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.
  •  
6.
  • Thornton, Claire, et al. (författare)
  • Role of mitochondria in apoptotic and necroptotic cell death in the developing brain.
  • 2015
  • Ingår i: Clinica chimica acta; international journal of clinical chemistry. - : Elsevier BV. - 1873-3492. ; 451:Part: A Special Issue: SI, s. 35-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxic-ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure. Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. Hypoxia-ischemia creates a toxic intracellular environment including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition, hypoxia-ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed of RIP1, RIP3 and MLKL), both of which converge at the mitochondria.
  •  
7.
  • Vontell, Regina, et al. (författare)
  • Cellular mechanisms of toll-like receptor-3 activation in the thalamus are associated with white matter injury in the developing brain.
  • 2015
  • Ingår i: Journal of neuropathology and experimental neurology. - 1554-6578. ; 74:3, s. 273-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Toll-like receptor-3 (TLR3) has been identified in a variety of intracellular structures (e.g. endosomes and endoplasmic reticulum); it detects viral molecular patterns and damage-associated molecular patterns. We hypothesized that, after white matter injury (WMI) has occurred, localization and activation of TLR3 are altered in gray matter structures in response to damage-associated molecular patterns and activated glia. Therefore, we investigated the subcellular localization of TLR3 and its downstream signaling pathway in postmortem brain sections from preterm infants with and without WMI (7 patients each). We assessed astroglia (glial fibrillary acidic protein-positive), microglia (ionized calcium-binding adaptor molecule-1-positive), and neuronal populations in 3 regions of the thalamus and in the posterior limb of the internal capsule and analyzed TLR3 messenger RNA and protein expression in the ventral lateral posterior thalamic region, an area associated with impaired motor function. We also assessed TLR3 colocalization with late endosomes (lysosome-associated membrane protein-1) and phagosomal compartments in this region. Glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1, and TLR3 immunoreactivity and messenger RNA expression were increased in cases with WMI compared with controls. In ventral lateral posterior neurons, TLR3 was colocalized with the endoplasmic reticulum and the autophagosome, suggesting that autophagy may be a stress response associated with WMI. Thus, alterations in TLR3 expression in WMI may be an underlying molecular mechanism associated with impaired development in preterm infants.
  •  
8.
  • Zhang, Xiaoli, et al. (författare)
  • γδT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice
  • 2017
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. Methods In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd −/−, lacking γδT cells), and TCRα-deficient (Tcra −/−, lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. Results White matter development was normal in Tcrd −/− and Tcrα −/− compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα −/− mice, but not in the Tcrd −/− mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα −/− mice, but no such effect was observed in Tcrd −/− mice. Conclusions Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy