SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thorvald Peter) srt2:(2020-2024)"

Sökning: WFRF:(Thorvald Peter) > (2020-2024)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adattil, Ruksana, et al. (författare)
  • Assessing the Psychosocial Impacts of Industry 4.0 Technologies Adoption in the Operator 4.0 : Literature Review & Theoretical Framework
  • 2024
  • Ingår i: International Journal of Industrial Engineering and Management. - : University of Novi Sad, Faculty of Technical Sciences. - 2217-2661 .- 2683-345X. ; 15:1, s. 59-80
  • Forskningsöversikt (refereegranskat)abstract
    • Emerging digital and smart technologies, including wearable and collaborative ones, related to the Industry 4.0 paradigm are playing an assisting, collaborative, and augmenting role for the Operator 4.0, and just as in previous industrial revolutions, the nature of work and the workplace for operators on the shop floor is changing. This literature review aims to look into the impact of digital and smart technologies adoption on the workers’ psychosocial stage under the light of the Operator 4.0 typology. Based on the review conducted, a theoretical framework for assessing the psychosocial impacts (risks) of Industry 4.0 technologies adoption in Operator 4.0 is proposed. The framework can be utilized by company managers, researchers, production engineers, and human resources personnel for carrying out a psychosocial risk assessment of Operator 4.0 in assembly, maintenance, and training operations as these operations get digitally transformed and smartified based on self-report questionnaires. Findings reveal that the nature of work, the social and organizational environment of work, and related individual factors are key categories that might affect the Operator 4.0 psychosocial stage on the shop floor.
  •  
2.
  • Danielsson, Oscar, 1982- (författare)
  • Augmented reality smart glasses as assembly operator support : Towards a framework for enabling industrial integration
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Operators are likely to continue to play an integral part in industrial assembly for the foreseeable future. This is in part because increasingly shorter life-cycles and increased variety of products makes automation harder to achieve. As technological advancements enables greater digitalization, the demands for increased individual designs of products increases. These changes, combined with a global competition, does put an increasing strain on operators to handle large quantities of information in a short timeframe. Augmented reality (AR) has been identified as a technology that can present assembly information to operators in an efficient manner. AR smart glasses (ARSG) is an implementation of AR suitable for operators since they are hands-free and can provide individual instructions in the correct context directly in their real work environment. There are currently early adopters of ARSG in production within industry and there are many predictions that ARSG usage will continue to grow. However, to fully integrate ARSG as a tool among others in a modern and complex factory there are several perspectives that a company need to take into consideration. This thesis investigates both the operator perspective and the manufacturing engineering perspective to support industry in how to make the correct investment decisions as regards to ARSG.The aim of this licentiate thesis is to provide a basis for a framework to enable industry to choose and integrate ARSG in production as a value adding operator support. This is achieved by investigating the theoretical basis of ARSG related technology and its maturity as well as the needs operators have in ARSG for their usage in assembly. The philosophical paradigm that is followed is that of pragmatism. The methodology used is design science, set in the research paradigm of mixed methods. Data has been collected through experiments with demonstrators, interviews, observations, and literature reviews. This thesis provides partial answers to the overall research aim.The thesis shows that the topic is feasible, relevant to industry, and a novel scientific contribution. Observations, interviews, and a literature review gave an overview of the operator perspective. Some highlights from the results are that operators are willing to work with ARSG, that operators need help in unlearning old tasks as well as learning new ones, and that optimal weight distribution of ARSG is dependent on the operators’ head-positioning. Highlights from the preliminary findings for the manufacturing engineering perspective include a general lack of standards for AR as regards vertical industrial application, improved tools for faster instruction generation, and large variations in specifications of available ARSG.Future work includes a complete answer to the manufacturing engineering perspective as well as combining all the results to create a framework for ARSG integration in industry.
  •  
3.
  • Danielsson, Oscar, 1982-, et al. (författare)
  • Integration of Augmented Reality Smart Glasses as Assembly Support : A Framework Implementation in a Quick Evaluation Tool
  • 2023
  • Ingår i: International Journal of Manufacturing Research. - : InderScience Publishers. - 1750-0591 .- 1750-0605. ; 18:2, s. 144-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Augmented reality smart glasses (ARSG) have been successfully used as operator support in production. However, their use is not yet widespread, likely in part due to a lack of knowledge about how to integrate ARSG into production. This lack of knowledge can also make it hard to estimate whether this is a worthwhile investment. Our solution is to provide an online evaluation tool to help production planners estimate the likelihood that ARSG will be worth the investment cost in specific production cases. Based on a strawman design, multiple design iterations were followed by a pilot test performed by participants from different manufacturing companies involved in planning production for operators. A Likert scale survey was used to evaluate the tool. The results show a slightly positive evaluation of the tool with suggestions for improvement, including widening the scope and granularity of the tool. Future works include further iterations and case studies.
  •  
4.
  • Fasth Berglund, Åsa, 1978, et al. (författare)
  • Variations in cycle-time when using knowledge-based tasks for humans and robots
  • 2021
  • Ingår i: IFAC-PapersOnLine. - : Elsevier. - 2405-8963. ; 54:1, s. 152-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Operator4.0 was coined in 2016 to create a research arena to understand how the physical, cognitive, and sensorial capabilities of an operator could be enhanced by automation. To create an interaction between operator and robots, there are important factors that needs to be defined. Two important factors are the task and function allocation. Without well-defined tasks it is hard to allocate the tasks between the robot and the human to create resource flexibility. Furthermore, it the tasks are knowledge-based rather than rule-based, the cycle time between operators can differ a lot. Two assumptions are discussed regarding knowledge-based tasks and automation. These are also tested in an experiment. Results show that it is a large variation of the cycle time for both humans (between 1,58 minutes up to 4,40 minutes) and robots (between 1,94 minutes up to 4,49 minutes) when it comes to knowledge-based and machine learning systems.
  •  
5.
  • Fogelberg, Emmie, et al. (författare)
  • Current and best practices in information presentation
  • 2024
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Digitalization and automation in industry can have both positive and negative effects on social sustainability. On one hand it can be a basis for monotonous, uncreative, and even dangerous workplaces and in some cases might even result in people losing their work. On the other hand, it can be a base for ergonomically sound and inclusive work, engaging everyone in improvements. This project aims for moving the focus on positive effects for social sustainability while still staying cost efficient and effective in economic and ecologic sustainability for digitalization and automation of work instructions and training in manual operations like assembly, machine operation & setup, maintenance, and material handling. The Industry 4.0 paradigm offers radically increased opportunities for doing just that. For example, increased digitization can create efficiency improvements through shorter lead times and reduced disruptions to production. New generations of technology and software as well as information dissemination can be accelerated and the traceability of products and materials in the industrial systems can be greatly increased. Digitization also provides opportunities to increase industrial resilience to challenges coming from elsewhere, such as demographic change and climate threats. Advanced application of digitization is seen by industries and decision-makers as the most important enabler for achieving the strategic sustainability goals and Agenda2030. A crucial factor for competitiveness is the human contribution. Here too, digitalisation is radically changing the conditions. In the last 20 years, work instructions have been transformed from printed text on paper into an increasingly digital representation. As knowledge increases about how work instructions for the manufacturing industry should be designed, they are rarely designed according to user conditions. At best, this results in a missed opportunity for performance improvements and at worst, it could potentially result in quality deficiencies, efficiency deficiencies and a lower degree of inclusion of staff groups. Digitization and automation permeate both society and industry more and more and there are many different technologies on the market. These can contribute to both increased efficiency and flexibility for the industry. However, there are a lot of challenges to both implement, design, and use instructions. Studies conducted in industry 2014–2018 show that operators and assembly workers only use instructions in 20–25% of cases in the operational phase when they are perceived as inefficient (Fast-Berglund & Stahre, 2013; Mattsson et al., 2018). Of course, this also increases the risks of, for example, assembly errors by not using instructions to the extent that they should be used. The corporate culture and standards are also an important part of how instructions are created and used. Depending on the structure and condition of the company and the production unit, for example, an assembly instruction at one company may include information about the product, process, and work environment, while an assembly instruction at another company includes completely different or only parts of this information. Of course, this is a natural consequence of sometimes far-inherited corporate cultures and traditions, but experience has also shown that it is to a very large extent the nature of work that defines the type of support system needed. In line with increased automation and increasing product variation as a result of increased customisation, operators’ tasks will require more creative work than before where the aim is to enable and handle the results of individual workers' creative thoughts about improvements in their own work situation, increasing cognitive load (Taylor et al., 2020). The development of digitalisation has created new opportunities for improved communication among employees in the manufacturing industry (Oesterreich & Teuteberg, 2016). Therefore, this technological development can and should support operators cognitively (Kaasinen et al., 2020; Mattsson et al., 2016). Although many new digital technologies are being developed and are available (Romero et al., 2016), it is still difficult to implement these so that people's cognitive work is supported. This is often due to the fact that the implementation does not take place in a way that people are comfortable with (Parasuraman & Riley, 1997). In many cases, humans are expected to adapt to technology and not the other way around (Thorvald et al., 2021). To implement better support for their operators, companies should focus on identifying the information needs that exist (Haghi et al., 2018) and then visualize it in a way that is useful to operators. The central aim for the project is to demonstrate how knowledge and systematic development of cognitive support and information design can increase quality and flexibility in future production and how this can be considered in the implementation of digital work instructions. In the industrial case studies, current state-of-practice in information presentation will be investigated and analysed together with state-of-the art knowledge and technology to map successful efforts in industry, identify what it is that makes them successful, or how a particularly challenging situation can be further improved through our knowledge of cognitive work in production.
  •  
6.
  • Kolbeinsson, Ari, et al. (författare)
  • Employing UX Processes for More Focused Development in Research Projects
  • 2020
  • Ingår i: DHM2020. - Amsterdam : IOS Press. - 9781643681047 - 9781643681054 ; , s. 288-298
  • Konferensbidrag (refereegranskat)abstract
    • The aim of this paper is to highlight some benefits of incorporating usability/user experience (UX) approaches in the software development process of research projects advancing digital human modeling (DHM), and how these processes, approaches, and methods can help keeping the development process more focused and efficient. Research projects that contain large software development components may receive funding only to complete the core tasks, and including additional persons in a project may seem like a waste of resources. This paper introduces user research that relied on a UX approach called contextual inquiry to ascertain user goals and how those might be translated into features for DHM named IMMA that has been developed as a part of numerous research projects in the last decade. The goal of the study is to support DHM development in general through highlighting methods and approaches that can be used, with specific results aimed to support the continued development of IMMA. Results clearly show that existing functions do not support the goals of the user group examined, and highlights the need of understanding user goals and creating functions to support achieving those goals, rather than assuming what functionalities might be needed. By understanding user goals, interpreting those into activities and functionalities time and resources can be used more effectively, which is important for small to medium research projects, where both time and budget may be limited.
  •  
7.
  • Kolbeinsson, Ari, et al. (författare)
  • Information display preferences for assembly instructions in 6 industrial settings
  • 2023
  • Ingår i: Cognitive Computing and Internet of Things. - New York : AHFE International Open Access. - 9781958651490 ; , s. 152-161
  • Konferensbidrag (refereegranskat)abstract
    • We detail the results of an ongoing study into the preference of workers in 6 different industrial companies for assembly instruction display types and modalities for their tasks. This study is performed as a part of a project that aims to create a theoretical framework for understanding requirements for instruction presentation in industry, and providing guidance to the creators of assembly instructions. The study, as well as the project as a whole, aims to expand on approaches from the Industry 4.0 framework, with a particular focus on the more recent Operator 4.0 approach that adds a focus on more human-centric aspects of digitalisation in industry. The study being presented is comprised of facility visits to each partner company where the current state of practice was presented by each company, an examination of information presentation and ope- rating procedures by the authors, and in-depth interviews with assembly workers at each site. All companies examined deal with variants in production, and the comple- xity of assembly spans from low to extremely high. The companies involved mostly rely on experienced workers, with high training, and relatively long times to train new personnel. The interviews led to findings such as simplified images being strongly pre- ferred for both beginners and experienced workers, with an emphasis on the image matching the worker’s viewpoint to the product, and experienced workers preferring simplified images with highlighted markings for details that can be seen from where the task is performed, and more. The findings will be used in further work to create a theoretical framework around digital work instructions, as well as used directly to help partner companies better standardise their instructions to support the cognitive abilities and limitations of their assembly workers. The goal with this is to create safe, comfortable and profitable workplaces that fulfil goals of social sustainability in the long term.
  •  
8.
  • Kuipers, Nathanaël, et al. (författare)
  • Appropriate Assembly Instruction Modes : Factors to Consider
  • 2021
  • Ingår i: Advances in Manufacturing Technology XXXIV. - Amsterdam : IOS Press. - 9781643681986 - 9781643681993 ; , s. 27-32
  • Konferensbidrag (refereegranskat)abstract
    • Presented is a literature study into the importance of how information in assembly instructions in manual assembly is presented, more specifically how various factors such as the complexity of the assembly itself, the mental and physical workload of the worker, as well as the experience and skill level of the worker affect the requirements for information presentation. The requirements made by Industry 4.0 on flexibility in production lines and an increased number of variants produced causes increased demands on workers, which leads to more cognitive demands being made on assembly workers. Studies exist around assembly instruction modes, but have in many cases ignored factors such as worker skill level, mental workload, and task complexity and how these affect the requirements for information presentation, which is a major contribution of this study. The findings are that no single solution fits all requirements, but that the aforementioned factors should be taken into account.
  •  
9.
  • Li, Dan, 1990, et al. (författare)
  • Exploration of Digitalized Presentation of Information for Operator 4.0 : Five Industrial Cases
  • 2022
  • Ingår i: Computers & industrial engineering. - : Elsevier. - 0360-8352 .- 1879-0550. ; 168
  • Tidskriftsartikel (refereegranskat)abstract
    • In the digital transformation of manufacturing companies towards Industry 4.0, shop-floor operators of the future, Operator 4.0, will require digitalized presentation of information as cognitive support for their work. This paper explores five industrial cases where Information Support Technology have been conceptualized and developed. These cases have exemplified how digitalized presentation of information can be approached with considerations of operators with varying cognitive work situations and production characteristics. Furthermore, these new technical capabilities have increased the level of cognitive automation to support operators’ individual abilities to perform their work in an increasingly more complex production environment. In conclusion, Information Support Technology in the service of Operator 4.0 is intimately linked with digitalization strategies for transformation towards Industry 4.0.
  •  
10.
  • Lindblom, Jessica, 1969-, et al. (författare)
  • Narrowing the Gap of Cognitive and Physical Ergonomics in DHM through Embodied Tool Use
  • 2020
  • Ingår i: DHM2020. - Amsterdam : IOS Press. - 9781643681047 - 9781643681054 ; , s. 311-322
  • Konferensbidrag (refereegranskat)abstract
    • The fields of human factors and ergonomics are systemic by nature, focusing on studying complex interaction between human and technology. However, the levels of explanation have resulted in physical or cognitive ergonomics. Modern understandings of human cognition and technology-mediated interaction, such as embodied cognition, activity theory and user experience (UX) is used as a frame of reference to analyze and illustrate the usage of a digital human modeling (DHM) tool in practice. In so doing, we try to narrow the gap between physical and cognitive ergonomics through embodied tool use. An identified core problem is to understand how a 2D devices should properly interact within 3D objects and manikins in a DMH tool that results in negative UX. The embodied concept of body schema clarifies the cognitive foundation for the negative UX. Some future work is presented, which could be beneficial for DHM, and, in the long run, promote a positive UX at work for various end-users of DHM tools.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy