SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tiainen Marjaana) srt2:(2020-2024)"

Sökning: WFRF:(Tiainen Marjaana) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuussaari, Mikko, et al. (författare)
  • Butterfly species’ responses to urbanization : differing effects of human population density and built-up area
  • 2021
  • Ingår i: Urban Ecosystems. - : Springer Science and Business Media LLC. - 1083-8155 .- 1573-1642. ; 24:3, s. 515-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Good knowledge on how increasing urbanization affects biodiversity is essential in order to preserve biodiversity in urban green spaces. We examined how urban development affects species richness and total abundance of butterflies as well as the occurrence and abundance of individual species within the Helsinki metropolitan area in Northern Europe. Repeated butterfly counts in 167 separate 1-km-long transects within Helsinki covered the entire urbanization gradient, quantified by human population density and the proportion of built-up area (within a 50-m buffer surrounding each butterfly transect). We found consistently negative effects of both human population density and built-up area on all studied butterfly variables, though butterflies responded markedly more negatively to increasing human population density than to built-up area. Responses in butterfly species richness and total abundance showed higher variability in relation to proportion of built-up area than to human density, especially in areas of high human density. Increasing human density negatively affected both the abundance and the occurrence of 47% of the 19 most abundant species, whereas, for the proportion of built-up area, the corresponding percentages were 32% and 32%, respectively. Species with high habitat specificity and low mobility showed higher sensitivity to urbanization (especially high human population density) than habitat generalists and mobile species that dominated the urban butterfly communities. Our results suggest that human population density provides a better indicator of urbanization effects on butterflies compared to the proportion of built-up area. The generality of this finding should be verified in other contexts and taxonomic groups.
  •  
2.
  • Niemelä, Ville, et al. (författare)
  • Higher versus lower blood pressure targets after cardiac arrest : Systematic review with individual patient data meta-analysis
  • 2023
  • Ingår i: Resuscitation. - 0300-9572. ; 189
  • Forskningsöversikt (refereegranskat)abstract
    • Purpose: Guidelines recommend targeting mean arterial pressure (MAP) > 65 mmHg in patients after cardiac arrest (CA). Recent trials have studied the effects of targeting a higher MAP as compared to a lower MAP after CA. We performed a systematic review and individual patient data meta-analysis to investigate the effects of higher versus lower MAP targets on patient outcome. Method: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, LILACS, BIOSIS, CINAHL, Scopus, the Web of Science Core Collection, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry, Google Scholar and the Turning Research into Practice database to identify trials randomizing patients to higher (≥71 mmHg) or lower (≤70 mmHg) MAP targets after CA and resuscitation. We used the Cochrane Risk of Bias tool, version 2 (RoB 2) to assess for risk of bias. The primary outcomes were 180-day all-cause mortality and poor neurologic recovery defined by a modified Rankin score of 4–6 or a cerebral performance category score of 3–5. Results: Four eligible clinical trials were identified, randomizing a total of 1,087 patients. All the included trials were assessed as having a low risk for bias. The risk ratio (RR) with 95% confidence interval for 180-day all-cause mortality for a higher versus a lower MAP target was 1.08 (0.92–1.26) and for poor neurologic recovery 1.01 (0.86–1.19). Trial sequential analysis showed that a 25% or higher treatment effect, i.e., RR < 0.75, can be excluded. No difference in serious adverse events was found between the higher and lower MAP groups. Conclusions: Targeting a higher MAP compared to a lower MAP is unlikely to reduce mortality or improve neurologic recovery after CA. Only a large treatment effect above 25% (RR < 0.75) could be excluded, and future studies are needed to investigate if relevant but lower treatment effect exists. Targeting a higher MAP was not associated with any increase in adverse effects.
  •  
3.
  • Ollila, Henriikka, et al. (författare)
  • Brain magnetic resonance imaging findings six months after critical COVID-19: A prospective cohort study.
  • 2024
  • Ingår i: Journal of critical care. - 1557-8615. ; 80
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 patients suffered from neurological symptoms in the acute phase. Whether this led to long-term consequences was unknown. We studied long-term brain MRI findings in ICU-treated COVID-19 patients and compared them with findings in groups with less severe acute disease.In this prospective cohort study, 69 ICU-treated, 46 ward-treated, and 46 home-isolated patients, as well as 53 non-COVID-19 controls, underwent brain MRI six months after acute COVID-19. Plasma neurofilament light chain (NfL), a biomarker of neuroaxonal injury, was measured simultaneously.Ischaemic infarctions existed in 5.8% of ICU-treated patients. Cerebral microbleeds (CMBs) existed in 27 (39.1%) ICU-treated, 13 (28.3%) ward-treated, 8 (17.4%) home-isolated COVID-19 patients, and 12 (22.6%) non-COVID controls. Patients with CMBs were older (p<0.001), had a higher level of plasma NfL (p=0.003), and higher supplementary oxygen days (p<0.001). In multivariable analysis, age (OR 1.06, 95% CI 1.02-1.09) and supplementary oxygen days (OR 1.07, 95% CI 1.02-1.13) were associated with CMBs. The ICU group showed prevalent distribution of CMBs in deep regions.Age and supplementary oxygen days were independently associated with CMBs; COVID-19 status showed no association. Accumulation of risk factors in the ICU group may explain the higher prevalence of CMBs.
  •  
4.
  • Olsen, Markus Harboe, et al. (författare)
  • Interactions in the 2×2×2 factorial randomised clinical STEPCARE trial and the potential effects on conclusions : a protocol for a simulation study
  • 2022
  • Ingår i: Trials. - : Springer Science and Business Media LLC. - 1745-6215. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Randomised clinical trials with a factorial design may assess the effects of multiple interventions in the same population. Factorial trials are carried out under the assumption that the trial interventions have no interactions on outcomes. Here, we present a protocol for a simulation study investigating the consequences of different levels of interactions between the trial interventions on outcomes for the future 2×2×2 factorial designed randomised clinical Sedation, TEmperature, and Pressure after Cardiac Arrest and REsuscitation (STEPCARE) trial in comatose patients after out-of-hospital cardiac arrest. Methods: By simulating a multisite trial with 50 sites and 3278 participants, and a presumed six-month all-cause mortality of 60% in the control population, we will investigate the validity of the trial results with different levels of interaction effects on the outcome. The primary simulation outcome of the study is the risks of type-1 and type-2 errors in the simulated scenarios, i.e. at what level of interaction is the desired alpha and beta level exceeded. When keeping the overall risk of type-1 errors ≤ 5% and the risk of type-2 errors ≤ 10%, we will quantify the maximum interaction effect we can accept if the planned sample size is increased by 5% to take into account possible interaction between the trial interventions. Secondly, we will assess how interaction effects influence the minimal detectable difference we may confirm or reject to take into account 5% (small interaction effect), 10% (moderate), or 15% (large) positive interactions in simulations with no ‘true’ intervention effect (type-1 errors) and small (5%), moderate (10%), or large negative interactions (15%) in simulations with ‘true’ intervention effects (type-2 errors). Moreover, we will investigate how much the sample size must be increased to account for a small, moderate, or large interaction effects. Discussion: This protocol for a simulation study will inform the design of a 2×2×2 factorial randomised clinical trial of how potential interactions between the assessed interventions might affect conclusions. Protocolising this simulation study is important to ensure valid and unbiased results.
  •  
5.
  • Skrifvars, Markus B., et al. (författare)
  • Protocol for an individual patient data meta-analysis on blood pressure targets after cardiac arrest
  • 2022
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 66:7, s. 890-897
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hypotension is common after cardiac arrest (CA), and current guidelines recommend using vasopressors to target mean arterial blood pressure (MAP) higher than 65 mmHg. Pilot trials have compared higher and lower MAP targets. We will review the evidence on whether higher MAP improves outcome after cardiac arrest. Methods: This systematic review and meta-analysis will be conducted based on a systematic search of relevant major medical databases from their inception onwards, including MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL), as well as clinical trial registries. We will identify randomised controlled trials published in the English language that compare targeting a MAP higher than 65–70 mmHg in CA patients using vasopressors, inotropes and intravenous fluids. The data extraction will be performed separately by two authors (a third author will be involved in case of disagreement), followed by a bias assessment with the Cochrane Risk of Bias tool using an eight-step procedure for assessing if thresholds for clinical significance are crossed. The outcomes will be all-cause mortality, functional long-term outcomes and serious adverse events. We will contact the authors of the identified trials to request individual anonymised patient data to enable individual patient data meta-analysis, aggregate data meta-analyses, trial sequential analyses and multivariable regression, controlling for baseline characteristics. The certainty of the evidence will be assessed by the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. We will register this systematic review with Prospero and aim to redo it when larger trials are published in the near future. Conclusions: This protocol defines the performance of a systematic review on whether a higher MAP after cardiac arrest improves patient outcome. Repeating this systematic review including more data likely will allow for more certainty regarding the effect of the intervention and possible sub-groups differences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy