SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tian Z. Q) srt2:(2020-2023)"

Sökning: WFRF:(Tian Z. Q) > (2020-2023)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
3.
  •  
4.
  • Yao, S. T., et al. (författare)
  • Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of whistler-mode waves in the solar wind and the relationship between their electromagnetic fields and charged particles is a fundamental question in space physics. Using high-temporal-resolution electromagnetic field and plasma data from the Magnetospheric MultiScale spacecraft, we report observations of low-frequency whistler waves and associated electromagnetic fields and particle behavior in the Earth's foreshock. The frequency of these whistler waves is close to half the lower-hybrid frequency (similar to 2 Hz), with their wavelength close to the ion gyroradius. The electron bulk flows are strongly modulated by these waves, with a modulation amplitude comparable to the solar wind velocity. At such a spatial scale, the electron flows are forcibly separated from the ion flows by the waves, resulting in strong electric currents and anisotropic ion distributions. Furthermore, we find that the low-frequency whistler wave propagates obliquely to the background magnetic field ( B (0)), and results in spatially periodic magnetic gradients in the direction parallel to B (0). Under such conditions, large pitch-angle electrons are trapped in wave magnetic valleys by the magnetic mirror force, and may provide free perpendicular electron energy to excite higher-frequency whistler waves. This study offers important clues and new insights into wave-particle interactions, wave generation, and microscale energy conversion processes in the solar wind.
  •  
5.
  • Yao, S. T., et al. (författare)
  • Propagating and Dynamic Properties of Magnetic Dips in the Dayside Magnetosheath : MMS Observations
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetosheath is inherently complex and rich, exhibiting various kinds of structures and perturbations. It is important to understand how these structures propagate and evolve and how they relate to the perturbations. Here we investigate a kind of magnetosheath structure known as a magnetic dip (MD). As far as we are aware, there have been no previous studies concerning the evolution (contracting or expanding) of these types of structures, and their propagation properties cannot be unambiguously determined. In this study, using Magnetospheric MultiScale (MMS) high-temporal resolution data and multispacecraft analysis methods, we obtain the propagation and dynamic features of a set of MDs. Four different types of MDs are identified: "frozen-in," "expanding," "contracting," and "stable-propagating." Significantly, a stable-propagation event is observed with a sunward propagation component. This indicates that the source of the structure in this case is closely associated with the magnetopause, which provides strong support to the contention in earlier research. We further reveal the mechanism leading to the MD contraction or expansion. The motion of the MDs boundary is found closely related with the dynamic pressure. The scale of the contracting and expanding events are typically similar to 5-20 rho(i) (ion gyroradius), significantly smaller than that of frozen-in events (similar to 40 rho(i)). The observations could relate large-scale (more than several tens of rho(i)) and kinetic-scale (less than rho(i)) MDs, by revealing an evolution that spans these different scales, and help us better understand the variation and dynamics of magnetosheath structures and plasmas.
  •  
6.
  • Ito, A., et al. (författare)
  • Cold-Season Methane Fluxes Simulated by GCP-CH4 Models
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 50:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-season methane (CH4) emissions may be poorly constrained in wetland models. We examined cold-season CH4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH4 yr−1. While summer CH4 emissions were well simulated compared to in-situ flux measurement observations, the models underestimated CH4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold-season emissions was simulated to increase at 0.4 ± 0.8% decade−1. Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement.
  •  
7.
  • Polme, S., et al. (författare)
  • FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles
  • 2020
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 105:1, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.
  •  
8.
  •  
9.
  • Li, C. -Y, et al. (författare)
  • Observation of inhomogeneous plasmonic field distribution in a nanocavity
  • 2020
  • Ingår i: Nature Nanotechnology. - : Nature Research. - 1748-3387 .- 1748-3395.
  • Tidskriftsartikel (refereegranskat)abstract
    • The progress of plasmon-based technologies relies on an understanding of the properties of the enhanced electromagnetic fields generated by the coupling nanostrucutres1–6. Plasmon-enhanced applications include advanced spectroscopies7–10, optomechanics11, optomagnetics12 and biosensing13–17. However, precise determination of plasmon field intensity distribution within a nanogap remains challenging. Here, we demonstrate a molecular ruler made from a set of viologen-based, self-assembly monolayers with which we precisely measures field distribution within a plasmon nanocavity with ~2-Å spatial resolution. We observed an unusually large plasmon field intensity inhomogeneity that we attribute to the formation of a plasmonic comb in the nanocavity. As a consequence, we posit that the generally adopted continuous media approximation for molecular monolayers should be used carefully.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy