SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tiderius Carl Johan) srt2:(2010-2014)"

Sökning: WFRF:(Tiderius Carl Johan) > (2010-2014)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sigurdsson, Ulf, et al. (författare)
  • In vivo transport of Gd-DTPA(2-) into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)
  • 2014
  • Ingår i: BMC Musculoskeletal Disorders. - : Springer Science and Business Media LLC. - 1471-2474. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA(2-). Methods: The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA(2-) (0.2 or 0.3 mmol/kg body weight). The relaxation time (T-1) and relaxation rate (R-1 = 1/T-1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (Delta R-1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results: The triple dose yielded higher concentrations of Gd-DTPA(2-) in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of Delta R-1 were similar for double and triple doses of the contrast agent. Delta R-1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. Delta R-1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in Delta R-1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p < 0.05). Conclusion: It is feasible to examine undamaged meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a double dose of Gd-DTPA(2-) (0.2 mmol/kg body weight).
  •  
2.
  • Siversson, Carl, et al. (författare)
  • Effects of B(1) inhomogeneity correction for three-dimensional variable flip angle T(1) measurements in hip dGEMRIC at 3 T and 1.5 T.
  • 2012
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 67:6, s. 1776-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.
  •  
3.
  • Siversson, Carl, et al. (författare)
  • Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle.
  • 2010
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807. ; 31:5, s. 1203-1209
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate the repeatability of the dGEMRIC (delayed gadolinium enhanced MRI of cartilage) method in osteoarthritis-prone knee joints for three different T1 quantification techniques: two-dimensional inversion recovery (2D-IR), three-dimensional Look-Locker (3D-LL), and three-dimensional variable flip angle (3D-VFA). MATERIALS AND METHODS: Nine subjects were examined twice, with a 2-week interval, using all three measurement techniques. Four regions of interest were defined in the central medial and lateral femoral cartilage. The repeatability was evaluated for each measurement technique. For the 3D techniques, the variation between different slices was also evaluated. RESULTS: Repeatability expressed by root-mean-square coefficient of variation (CV(RMS)) showed similar results for 2D-IR and 3D-LL (5.4-8.4%). For 3D-VFA CV(RMS) was higher (9.3-15.2%). Intraclass correlation coefficient showed both 2D-IR and 3D-LL reliability to be moderate, while 3D-VFA reliability was low. Inter-slice CV(RMS) and ICC was of the same magnitude as the repeatability. No clear differences could be interpreted between the condyles. CONCLUSION: Both 2D-IR and 3D-LL perform well in generating repeatable dGEMRIC results, while 3D-VFA results are somewhat inferior. Furthermore, repeatability results in this study are similar to previously published results for healthy subjects. Finally, the positioning of the analyzed images is crucial to generate reliable repeatability results.
  •  
4.
  •  
5.
  • Hawezi, Zana, et al. (författare)
  • In vivo transport of Gd-DTPA(2-) in human knee cartilage assessed by depth-wise dGEMRIC analysis.
  • 2011
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807. ; 34, s. 1352-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate the transport of Gd-DTPA(2-) in different layers of femoral knee cartilage in vivo. MATERIALS AND METHODS: T(1) measurements (1.5 Tesla) were performed in femoral knee cartilage of 23 healthy volunteers. The weight-bearing central cartilage was analyzed before contrast and at eight time points after an intravenous injection of Gd-DTPA(2-) : 12-60 min (4 volunteers) and 1-4 h (19 volunteers). Three regions of interest were segmented manually: deep, middle, and superficial. RESULTS: Before contrast injection, a depth-wise variation of T(1) was observed with 50% higher values in the superficial region compared with the deep region. In the deep region, the uptake of Gd-DTPA(2-) was not detected until 36 min and the concentration increased until 240 min, whereas in the superficial region, the uptake was seen already at 12 min and the concentration decreased after 180 min (P < 0.01). There was a difference between medial and lateral compartment regarding bulk, but not superficial Gd-DTPA(2-) concentration. The bulk gadolinium concentration was negatively related to the cartilage thickness (r = -0.68; P < 0.01). CONCLUSION: The depth-wise and thickness dependent variations in Gd-DTPA(2) transport influence the interpretation of bulk dGEMRIC analysis in vivo. In thick cartilage, incomplete penetration of Gd-DTPA(2) will yield a falsely too long T(1) . J. Magn. Reson. Imaging 2011;. © 2011 Wiley-Liss, Inc.
  •  
6.
  • Kijowski, R, et al. (författare)
  • Imaging following acute knee trauma.
  • 2014
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 22:10, s. 1429-1443
  • Forskningsöversikt (refereegranskat)abstract
    • Joint injury has been recognized as a potent risk factor for the onset of osteoarthritis. The vast majority of studies using imaging technology for longitudinal assessment of patients following joint injury have focused on the injured knee joint, specifically in patients with anterior cruciate ligament injury and meniscus tears where a high risk for rapid onset of post-traumatic osteoarthritis is well known. Although there are many imaging modalities under constant development, magnetic resonance (MR) imaging is the most important instrument for longitudinal monitoring after joint injury. MR imaging is sensitive for detecting early cartilage degeneration and can evaluate other joint structures including the menisci, bone marrow, tendons, and ligaments which can be sources of pain following acute injury. In this review, focusing on imaging following acute knee trauma, several studies were identified with promising short-term results of osseous and soft tissue changes after joint injury. However, studies connecting these promising short-term results to the development of osteoarthritis were limited which is likely due to the long follow-up periods needed to document the radiographic and clinical onset of the disease. Thus, it is recommended that additional high quality longitudinal studies with extended follow-up periods be performed to further investigate the long-term consequences of the early osseous and soft tissue changes identified on MR imaging after acute knee trauma.
  •  
7.
  •  
8.
  • Neuman, Paul, et al. (författare)
  • Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury - comparison with asymptomatic volunteers.
  • 2011
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 19, s. 977-983
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: In this observational longitudinal study we estimate knee joint cartilage glycosaminoglycan (GAG) content, in patients with an acute anterior cruciate ligament (ACL) injury, with or without a concomitant meniscus injury. METHODS: 29 knees (19 men/10 women) were prospectively examined by repeat delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), approximately 3 weeks and 2.3±1.3 (range 4.5) years after the injury. We estimated the GAG content (T1Gd) in the central weight-bearing parts of the medial and lateral femoral cartilage and compared results with a reference cohort (n=24) with normal knees and no history of injury examined by dGEMRIC at one occasion previously. RESULTS: The healthy reference group had longer T1Gd values compared with the ACL-injured patients at follow-up both medially: 428±38 vs 363±61ms (P<0.0001) and laterally: 445±41 vs 396±48ms (P=0.0002). At follow-up T1Gd was lower in meniscectomized patients compared to those without a meniscectomy, both medially (-84ms, P=0.002) and laterally (-38ms, P=0.05). In the injured group, the medial femoral cartilage showed similar T1Gd at the two dGEMRIC investigations: 357±50 vs 363±61ms (P=0.57), whereas the lateral femoral cartilage T1Gd increased: 374±48 vs 396±48ms (P=0.04). CONCLUSIONS: The general decrease in cartilage T1Gd in ACL-injured patients compared with references provide evidence for structural matrix GAG changes that seem more pronounced if a concomitant meniscal injury is present. The fact that post-traumatic OA commonly develops in ACL-injured patients, in particularly those with meniscectomy, suggests that shorter T1Gd may be an early biomarker for OA.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy