SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tissot Cécile) "

Search: WFRF:(Tissot Cécile)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ashton, Nicholas J., et al. (author)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • In: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Journal article (peer-reviewed)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
2.
  • Ashton, Nicholas J., et al. (author)
  • Diagnostic accuracy of the plasma ALZpath pTau217 immunoassay to identify Alzheimer's disease pathology.
  • 2023
  • In: medRxiv : the preprint server for health sciences.
  • Journal article (peer-reviewed)abstract
    • Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer's disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests.To determine the utility of a novel and commercially available Single molecule array (Simoa) for plasma pTau217 (ALZpath) to detect AD pathology. To evaluate references ranges for abnormal Aβ across three selected cohorts.Three single-centre observational cohorts were involved in the study: Translational Biomarkers in Aging and Dementia (TRIAD), Wisconsin Registry for Alzheimer's Prevention (WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN). MRI, Aβ-PET, and tau-PET data were available for TRIAD and WRAP, while CSF biomarkers were additionally measured in a subset of TRIAD and SPIN. Plasma measurements of pTau181, pTau217 (ALZpath), pTau231, Aβ42/40, GFAP, and NfL, were available for all cohorts. Longitudinal blood biomarker data spanning 3 years for TRIAD and 8 years for WRAP were included.MRI, Aβ-PET, tau-PET, CSF biomarkers (Aβ42/40 and pTau immunoassays) and plasma pTau217 (ALZpath Simoa).The accuracy of plasma pTau217 for detecting abnormal amyloid and tau pathology. Longitudinal pTau217 change according to baseline pathology status.The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%]) were included in the study. High accuracy was observed in identifying elevated Aβ (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95%CI 0.84-0.99) across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and comparable to CSF biomarkers. The detection of abnormal Aβ pathology using binary or three-range references yielded reproducible results. Longitudinally, plasma pTau217 showed an annual increase only in Aβ-positive individuals, with the highest increase observed in those with tau-positivity.The ALZpath plasma pTau217 Simoa assay accurately identifies biological AD, comparable to CSF biomarkers, with reproducible cut-offs across cohorts. It detects longitudinal changes, including at the preclinical stage, and is the first widely available, accessible, and scalable blood test for pTau217 detection.
  •  
3.
  • Ferrari-Souza, Joao Pedro, et al. (author)
  • Vascular risk burden is a key player in the early progression of Alzheimer's disease
  • 2024
  • In: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 88-98
  • Journal article (peer-reviewed)abstract
    • Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-beta 1-42 (A beta 1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF A beta 1-42or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
  •  
4.
  • Ferreira, Pamela C. L., et al. (author)
  • Endocannabinoid System Biomarkers in Alzheimer's Disease
  • 2023
  • In: CANNABIS AND CANNABINOID RESEARCH. - : Mary Ann Liebert Inc. - 2578-5125 .- 2378-8763. ; 8:1, s. 77-91
  • Journal article (peer-reviewed)abstract
    • Background: Alterations in the endocannabinoid system (ES) have been described in Alzheimer's disease (AD) pathophysiology. In the past years, multiple ES biomarkers have been developed, promising to advance our understanding of ES changes in AD.Discussion: ES biomarkers, including positron emission tomography with cannabinoid receptors tracers and biofluid-based endocannabinoids, are associated with AD disease progression and pathological features.Conclusion: Although not specific enough for AD diagnosis, ES biomarkers hold promise for prognosis, drug-target engagement, and a better understanding of the disease. Here, we summarize currently available ES biomarker findings and discuss their potential applications in the AD research field.
  •  
5.
  • Pascoal, Tharick A., et al. (author)
  • Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease
  • 2023
  • In: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Introduction: The optimal combination of amyloid-β/tau/neurodegeneration (A/T/N) biomarker profiles for the diagnosis of Alzheimer's disease (AD) dementia is unclear. Methods: We examined the discriminative accuracy of A/T/N combinations assessed with neuroimaging biomarkers for the differentiation of AD from cognitively unimpaired (CU) elderly and non-AD neurodegenerative diseases in the TRIAD, BioFINDER-1 and BioFINDER-2 cohorts (total n = 832) using area under the receiver operating characteristic curves (AUC). Results: For the diagnosis of AD dementia (vs. CU elderly), T biomarkers performed as well as the complete A/T/N system (AUC range: 0.90–0.99). A and T biomarkers in isolation performed as well as the complete A/T/N system in differentiating AD dementia from non-AD neurodegenerative diseases (AUC range; A biomarker: 0.84–1; T biomarker: 0.83–1). Discussion: In diagnostic settings, the use of A or T neuroimaging biomarkers alone can reduce patient burden and medical costs compared with using their combination, without significantly compromising accuracy.
  •  
6.
  • Pascoal, Tharick A, et al. (author)
  • Microglial activation and tau propagate jointly across Braak stages.
  • 2021
  • In: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 27, s. 1592-1599
  • Journal article (peer-reviewed)abstract
    • Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
  •  
7.
  •  
8.
  • Sanchez-Rodriguez, Lazaro M, et al. (author)
  • Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease.
  • 2024
  • In: Communications biology. - 2399-3642. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
  •  
9.
  • Sanchez-Rodriguez, Lazaro M, et al. (author)
  • Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder.
  • 2023
  • In: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Journal article (other academic/artistic)abstract
    • Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants (N=132). Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
  •  
10.
  • Schaffer Aguzzoli, Cristiano, et al. (author)
  • Neuropsychiatric Symptoms and Microglial Activation in Patients with Alzheimer Disease
  • 2023
  • In: JAMA network open. - 2574-3805. ; 6:11
  • Journal article (peer-reviewed)abstract
    • Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-β ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-β PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (β=7.37; 95% CI, 1.34-13.41; P=.01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (β=6.86; 95% CI, 1.77-11.95; P=.008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (β=5.72; 95% CI, 0.33-11.10; P=.03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-β- and microglia-targeted therapies could have an impact on relieving these symptoms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view