SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torrado M.) srt2:(2010-2014)"

Sökning: WFRF:(Torrado M.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delcamp, A., et al. (författare)
  • Dykes and structures of the NE rift of Tenerife, Canary Islands : a record of stabilisation and destabilisation of ocean island rift zones
  • 2012
  • Ingår i: Bulletin of Volcanology. - : Springer. - 0258-8900 .- 1432-0819. ; 74:5, s. 963-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North–East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth, the intrusive complex development, the flank creep, the speed of flank deformation and the associated changes in topography. Using different approaches, a similar rift evolution has been proposed in volcanic oceanic islands elsewhere, showing that this model likely reflects a general and widespread process. This study, however, shows that the idea that dykes orient simply parallel to the rift or to the collapse scar walls is too simple; instead, a dynamic interplay between external factors (e.g. collapse, erosion) and internal forces (e.g. intrusions) is envisaged. This model thus provides a geological framework to understand the evolution of the NERZ and may help to predict developments in similar oceanic volcanoes elsewhere.
  •  
2.
  • Delcamp, A., et al. (författare)
  • Vertical axis rotation of the upper portions of the north-east rift of Tenerife Island inferred from paleomagnetic data
  • 2010
  • Ingår i: Tectonophysics. - : Elsevier BV. - 0040-1951 .- 1879-3266. ; 492:1-4, s. 40-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Paleomagnetic sampling sites were established in 82 dykes along an 8 km long section of the north-east rift-zone (NERZ) of Tenerife, Canary Islands, Spain. Of the 70 interpretable sites, 16 are of normal polarity and 54 of reversed polarity. Four normal polarity sites and fifteen reverse polarity sites were excluded from the grand mean calculation for statistical reasons. After inverting the reverse polarity sites through the origin, the in-situ grand mean yields a declination (D) = 023.8 degrees, an inclination (I) = 42.3 degrees, alpha(95) = 3.2 degrees, kappa = 39.0, N = 51 that is discordant to the expected late Miocene to Pleistocene field direction (D = 357.6 degrees, I = 38.8 degrees, alpha(95) = 4.7 degrees). This discordance can be explained as either a 26 degrees clockwise vertical axis rotation or a 28 degrees WNW-side-down-tilt about an average 009 degrees horizontal tilt axis. The sampled section is composed of numerous semi-vertical dykes cutting mainly lava flow units that are sub-horizontal and cross-cut by steeply dipping faults (70 degrees-90 degrees). Field evidence is therefore more compatible with a vertical-axis rotation rather than a horizontal axis tilt of the drilled units. We argue that this clockwise vertical-axis rotation is likely related to strike-slip movements that occurred along the edges of the collapse scars and accommodate the emplacement and growth of the underlying intrusive core and associated dykes. Six new Ar-40/Ar-39 age determinations constrain the main interval of dyke emplacement within the NERZ between 0.99 Ma and 0.56 Ma. The intrusive activity in the sampled section of the rift appears to have been almost continuous, with several intrusion pulses that are probably related to flank destabilisation event(s) during the mid Pleistocene. Our study thus demonstrates a long-lived, multi-faceted history that shaped the NERZ.
  •  
3.
  • Torrado, J. F., et al. (författare)
  • Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays
  • 2010
  • Ingår i: physica status solidi (RRL) – Rapid Research Letters. - : Wiley. - 1862-6254. ; 4:10, s. 271-273
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this Letter we present the effects that the excitation of plasmon-like modes in periodically perforated Fe films have over the Transverse Magneto-Optical Kerr Effect (TMOKE). The excitation of the modes gives rise to clear signatures in the TMOKE spectra. We analyze the spectral position of the structures as a function of both the polar and azimuth angle. [GRAPHICS] Schematic representation of the system, and TMOKE signal for a Fe membrane along phi = 0 degrees.
  •  
4.
  • Troll, Valentin, et al. (författare)
  • Pre-Teide Volcanic Activity on the Northeast Volcanic Rift Zone
  • 2013
  • Ingår i: Teide Volcano. - Berlin, Heidelberg : Springer Berlin/Heidelberg. - 9783642258923 - 9783642258930 ; , s. 75-92
  • Bokkapitel (refereegranskat)abstract
    • The northeast rift zone of Tenerife (NERZ) presents a partially eroded volcanic rift that offers a superb opportunity to study the structure and evolution of oceanic rift zones. Field data, structural observations, isotopic dating, magnetic stratigraphy, and isotope geochemistry have recently become available for this rift and provide a reliable temporal framework for understanding the structural and petrological evolution of the entire rift zone. The NERZ appears to have formed in several major pulses of activity with a particularly high production rate in the Pleistocene (ca. 0.99 and 0.56 Ma). The rift underwent several episodes of flank creep and eventual catastrophic collapses driven by intense intrusive activity and gravitational adjustment. Petrologically, a variety of mafic rock types, including crystal-rich ankaramites, have been documented, with most samples isotopically typical of the “Tenerife signal”. Some of the NERZ magmas also bear witness to contamination by hydrothermally altered components of the island edifice and/or sediments. Isotope geochemistry furthermore points to the generation of the NERZ magmas from an upwelling column of mantle plume material mixed with upper asthenospheric mantle. Finally, persistent isotopic similarity through time between the NERZ and the older central edifices on Tenerife provides strong evidence for a genetic link between Tenerife’s principal volcanic episodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy