SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torseth K.) srt2:(2020-2024)"

Sökning: WFRF:(Torseth K.) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aas, Wenche, et al. (författare)
  • Trends in Air Pollution in Europe, 2000–2019
  • 2024
  • Ingår i: Aerosol and Air Quality Research. - 2071-1409 .- 1680-8584. ; 24:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper encompasses an assessment of air pollution trends in rural environments in Europe over the 2000–2019 period, benefiting from extensive long-term observational data from the EMEP monitoring network and EMEP MSC-W model computations. The trends in pollutant concentrations align with the decreasing emission patterns observed throughout Europe. Annual average concentrations of sulfur dioxide, particulate sulfate, and sulfur wet deposition have shown consistent declines of 3–4% annually since 2000. Similarly, oxidized nitrogen species have markedly decreased across Europe, with an annual reduction of 1.5–2% in nitrogen dioxide concentrations, total nitrate in the air, and oxidized nitrogen deposition. Notably, emission reductions and model predictions appear to slightly surpass the observed declines in sulfur and oxidized nitrogen, indicating a potential overestimation of reported emission reductions. Ammonia emissions have decreased less compared to other pollutants since 2000. Significant reductions in particulate ammonium have however, been achieved due to the impact of reductions in SOx and NOx emissions. For ground level ozone, both the observed and modelled peak levels in summer show declining trends, although the observed decline is smaller than modelled. There have been substantial annual reductions of 1.8% and 2.4% in the concentrations of PM10 and PM2.5, respectively. Elemental carbon has seen a reduction of approximately 4.5% per year since 2000. A similar reduction for organic carbon is only seen in winter when primary anthropogenic sources dominate. The observed improvements in European air quality emphasize the importance of comprehensive legislations to mitigate emissions.
  •  
2.
  • Yttri, K. E., et al. (författare)
  • Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2731-2758
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed long-term measurements of organic carbon, elemental carbon, and source-specific organic tracers from 2017 to 2020 to constrain carbonaceous aerosol sources in the rapidly changing Arctic. Additionally, we used absorption photometer (Aethalometer) measurements to constrain equivalent black carbon (eBC) from biomass burning and fossil fuel combustion, using positive matrix factorization (PMF). Our analysis shows that organic tracers are essential for understanding Arctic carbonaceous aerosol sources. Throughout 2017 to 2020, levoglucosan exhibited bimodal seasonality, reflecting emissions from residential wood combustion (RWC) in the heating season (November to May) and from wildfires (WFs) in the non-heating season (June to October), demonstrating a pronounced interannual variability in the influence of WF. Biogenic secondary organic aerosol (BSOA) species (2-methyltetrols) from isoprene oxidation was only present in the non-heating season, peaking in July to August. Warm air masses from Siberia led to a substantial increase in 2-methyltetrols in 2019 and 2020 compared to 2017 to 2018. This highlights the need to investigate the contribution of local sources vs. long-range atmospheric transport (LRT), considering the temperature sensitivity of biogenic volatile organic compound emissions from Arctic vegetation. Tracers of primary biological aerosol particles (PBAPs), including various sugars and sugar alcohols, showed elevated levels in the non-heating season, although with different seasonal trends, whereas cellulose had no apparent seasonality. Most PBAP tracers and 2-methyltetrols peaked during influence of WF emissions, highlighting the importance of measuring a range of source-specific tracers to understand sources and dynamics of carbonaceous aerosol. The seasonality of carbonaceous aerosol was strongly influenced by LRT episodes, as background levels are extremely low. In the non-heating season, the organic aerosol peak was as influenced by LRT, as was elemental carbon during the Arctic haze period. Source apportionment of carbonaceous aerosol by Latin hypercube sampling showed mixed contributions from RWC (46 %), fossil fuel (FF) sources (27 %), and BSOA (25 %) in the heating season. In contrast, the non-heating season was dominated by BSOA (56 %), with lower contributions from WF (26 %) and FF sources (15 %). Source apportionment of eBC by PMF showed that FF combustion dominated eBC (70±2.7 %), whereas RWC (22 ± 2.7 %) was more abundant than WF (8.0 ± 2.9 %). Modeled BC concentrations from FLEXPART (FLEXible PARTicle dispersion model) attributed an almost equal share to FF sources (51 ± 3.1 %) and to biomass burning. Both FLEXPART and the PMF analysis concluded that RWC is a more important source of (e)BC than WF. However, with a modeled RWC contribution of 30 ± 4.1 % and WF of 19 ± 2.8 %, FLEXPART suggests relatively higher contributions to eBC from these sources. Notably, the BB fraction of EC was twice as high as that of eBC, reflecting methodological differences between source apportionment by LHS and PMF. However, important conclusions drawn are unaffected, as both methods indicate the presence of RWC- and WF-sourced BC at Zeppelin, with a higher relative BB contribution during the non-heating season. In summary, organic aerosol (281 ± 106 ng m−3) constitutes a significant fraction of Arctic PM10, although surpassed by sea salt aerosol (682 ± 46.9 ng m−3), mineral dust (613 ± 368 ng m−3), and typically non-sea-salt sulfate SO24− (314 ± 62.6 ng m−3), originating mainly from anthropogenic sources in winter and from natural sources in summer.
  •  
3.
  • Espen Yttri, Karl, et al. (författare)
  • Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001-2018
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:9, s. 7149-7170
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 18 years (2001-2018) of aerosol measurements, including organic and elemental carbon (OC and EC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, and ions, at the Birkenes Observatory (southern Norway) - a site representative of the northern European region. The OC=EC (2001-2018) and the levoglucosan (2008-2018) time series are the longest in Europe, with OC=EC available for the PM10, PM2:5 (fine), and PM10-2:5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineraldust- dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammoniumnitrate- dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS). We observed significant (p < 0:05), large decreases in EC in PM10 (-3:9%yr-1) and PM2:5 (-4:2%yr-1) and a smaller decline in levoglucosan (-2:8%yr-1), suggesting that OC=EC from traffic and industry is decreasing, whereas the abatement of OC=EC from biomass burning has been slightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2:5 (-3:9%yr-1) and PM10 (-4:5%yr-1). PMF apportioned 72% of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with a low aerosol ngstr m exponent (AAED0.93) fraction, assumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78% to eBC mass. The higher AAE fraction (AAED2.04) is likely eBC from BB (eBCBB). Source-receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF. Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2:5 (C3:2%yr-1) and PM10 (C2:4%yr-1) underscores the importance of biogenic sources at Birkenes (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %-91% of OC in PM2:5, PM10-2:5, and PM10 was attributed to biogenic sources in summer vs. 22 %- 37% in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy