SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trägårdh Elin) "

Sökning: WFRF:(Trägårdh Elin)

  • Resultat 1-10 av 108
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Johan, et al. (författare)
  • Complete metabolic response with [18F]fluorodeoxyglucose-positron emission tomography/computed tomography predicts survival following induction chemotherapy and radical cystectomy in clinically lymph node positive bladder cancer
  • 2022
  • Ingår i: BJU International. - : Wiley. - 1464-4096 .- 1464-410X. ; 129:2, s. 174-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To determine whether repeated [18F]fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET-CT) scans can predict increased cancer-specific survival (CSS) after induction chemotherapy followed by radical cystectomy (RC). Patients and Methods: Between 2007 and 2018, 86 patients with clinically lymph node (LN)-positive bladder cancer (T1–T4, N1–N3, M0–M1a) were included and underwent a repeated FDG-PET-CT during cisplatin-based induction chemotherapy. The 71 patients that had a response to chemotherapy underwent RC. Response to chemotherapy was evaluated in LNs through repeated FDG-PET-CT and stratified as partial response or complete response using three different methods: maximum standardised uptake value (SUVmax), adapted Deauville criteria, and total lesion glycolysis (TLG). Progression-free survival (PFS) and CSS were analysed for all three methods by Cox regression analysis. Results: After a median follow-up of 40 months, 15 of the 71 patients who underwent RC had died from bladder cancer. Using SUVmax and the adapted Deauville criteria, multivariable Cox regression analyses adjusting for age, clinical tumour stage and LN stage showed that complete response was associated with increased PFS (hazard ratio [HR] 3.42, 95% confidence interval [CI] 1.20–9.77) and CSS (HR 3.30, 95% CI 1.02–10.65). Using TLG, a complete response was also associated with increased PFS (HR 5.17, 95% CI 1.90–14.04) and CSS (HR 6.32, 95% CI 2.06–19.41). Conclusions: Complete metabolic response with FDG-PET-CT predicts survival after induction chemotherapy followed by RC in patients with LN-positive bladder cancer and comprises a novel tool in evaluating response to chemotherapy before surgery. This strategy has the potential to tailor treatment in individual patients by identifying significant response to chemotherapy, which motivates the administration of a full course of induction chemotherapy with a higher threshold for suspending treatment due to toxicity and side-effects.
  •  
2.
  • Abuhasanein, Suleiman, et al. (författare)
  • A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria
  • 2024
  • Ingår i: Scandinavian Journal of Urology. - 2168-1813. ; 59, s. 90-97
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria. METHODS: Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method. RESULTS: The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%). CONCLUSIONS: We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.
  •  
3.
  • Abuhasanein, Suleiman, et al. (författare)
  • A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria
  • 2024
  • Ingår i: Scandinavian journal of urology. - : Medical Journal Sweden AB. - 2168-1805 .- 2168-1813. ; 59, s. 90-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria. Methods: Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method. Results: The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%). Conclusions: We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.
  •  
4.
  • Almer, Jakob, et al. (författare)
  • Prevalence of manual Strauss LBBB criteria in patients diagnosed with the automated Glasgow LBBB criteria.
  • 2015
  • Ingår i: Journal of Electrocardiology. - : Elsevier BV. - 1532-8430 .- 0022-0736. ; 48:4, s. 558-564
  • Tidskriftsartikel (refereegranskat)abstract
    • About one-third of patients undergoing cardiac resynchronization therapy because of left bundle branch block (LBBB) and heart failure do not improve. Strauss et al. have developed strict criteria to more accurately define complete LBBB in this patient group. The aim of this study was to investigate the prevalence of the manual application of the Strauss criteria for LBBB (QRS≥140ms in men, ≥130ms in women, along with mid-QRS notching/slurring) in consecutive patients who have been diagnosed with LBBB by the automated Glasgow criteria (QRS≥120ms).
  •  
5.
  • Anand, Aseem, et al. (författare)
  • A preanalytic validation study of automated bone scan index : Effect on accuracy and reproducibility due to the procedural variabilities in bone scan image acquisition
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 57:12, s. 1865-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the procedural variability in image acquisition on the quantitative assessment of bone scan is unknown. Here, we have developed and performed preanalytical studies to assess the impact of the variability in scanning speed and in vendor-specific γ-camera on reproducibility and accuracy of the automated bone scan index (BSI). Methods: Two separate preanalytical studies were performed: a patient study and a simulation study. In the patient study, to evaluate the effect on BSI reproducibility, repeated bone scans were prospectively obtained from metastatic prostate cancer patients enrolled in 3 groups (Grp). In Grp1, the repeated scan speed and the γ-camera vendor were the same as that of the original scan. In Grp2, the repeated scan was twice the speed of the original scan. In Grp3, the repeated scan used a different γ-camera vendor than that used in the original scan. In the simulation study, to evaluate the effect on BSI accuracy, bone scans of a virtual phantom with predefined skeletal tumor burden (phantom-BSI) were simulated against the range of image counts (0.2, 0.5, 1.0, and 1.5 million) and separately against the resolution settings of the γ-cameras. The automated BSI was measured with a computer-automated platform. Reproducibility was measured as the absolute difference between the repeated BSI values, and accuracy was measured as the absolute difference between the observed BSI and the phantom-BSI values. Descriptive statistics were used to compare the generated data. Results: In the patient study, 75 patients, 25 in each group, were enrolled. The reproducibility of Grp2 (mean ± SD, 0.35 ± 0.59) was observed to be significantly lower than that of Grp1 (mean ± SD, 0.10 ± 0.13; P < 0.0001) and that of Grp3 (mean ± SD, 0.09 ± 0.10; P < 0.0001). However, no significant difference was observed between the reproducibility of Grp3 and Grp1 (P = 0.388). In the simulation study, the accuracy at 0.5 million counts (mean ± SD, 0.57 ± 0.38) and at 0.2 million counts (mean ± SD, 4.67 ± 0.85) was significantly lower than that observed at 1.5 million counts (mean ± SD, 0.20 ± 0.26; P < 0.0001). No significant difference was observed in the accuracy data of the simulation study with vendor-specific γ-cameras (P 5 0.266). Conclusion: In this study, we observed that the automated BSI accuracy and reproducibility were dependent on scanning speed but not on the vendor-specific γ-cameras. Prospective BSI studies should standardize scanning speed of bone scans to obtain image counts at or above 1.5 million.
  •  
6.
  • Anand, Aseem, et al. (författare)
  • Assessing Radiographic Response to 223Ra with an Automated Bone Scan Index in Metastatic Castration-Resistant Prostate Cancer Patients
  • 2020
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X .- 1535-5667. ; 61:5, s. 671-675
  • Tidskriftsartikel (refereegranskat)abstract
    • For effective clinical management of patients being treated with 223Ra, there is a need for radiographic response biomarkers to minimize disease progression and to stratify patients for subsequent treatment options. The objective of this study was to evaluate an automated bone scan index (aBSI) as a quantitative assessment of bone scans for radiographic response in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: In a multicenter retrospective study, bone scans from patients with mCRPC treated with monthly injections of 223Ra were collected from 7 hospitals in Sweden. Patients with available bone scans before treatment with 223Ra and at treatment discontinuation were eligible for the study. The aBSI was generated at baseline and at treatment discontinuation. The Spearman rank correlation was used to correlate aBSI with the baseline covariates: alkaline phosphatase (ALP) and prostate-specific antigen (PSA). The Cox proportional-hazards model and Kaplan-Meier curve were used to evaluate the association of covariates at baseline and their change at treatment discontinuation with overall survival (OS). The concordance index (C-index) was used to evaluate the discriminating strength of covariates in predicting OS. Results: Bone scan images at baseline were available from 156 patients, and 67 patients had both a baseline and a treatment discontinuation bone scan (median, 5 doses; interquartile range, 3-6 doses). Baseline aBSI (median, 4.5; interquartile range, 2.4-6.5) was moderately correlated with ALP (r = 0.60, P < 0.0001) and with PSA (r = 0.38, P = 0.003). Among baseline covariates, aBSI (P = 0.01) and ALP (P = 0.001) were significantly associated with OS, whereas PSA values were not (P = 0.059). After treatment discontinuation, 36% (24/67), 80% (54/67), and 13% (9/67) of patients demonstrated a decline in aBSI, ALP, and PSA, respectively. As a continuous variable, the relative change in aBSI after treatment, compared with baseline, was significantly associated with OS (P < 0.0001), with a C-index of 0.67. Median OS in patients with both aBSI and ALP decline (median, 134 wk) was significantly longer than in patients with ALP decline only (median, 77 wk; P = 0.029). Conclusion: Both aBSI at baseline and its change at treatment discontinuation were significant parameters associated with OS. The study warrants prospective validation of aBSI as a quantitative imaging response biomarker to predict OS in patients with mCRPC treated with 223Ra.
  •  
7.
  • Bajc, Marika, et al. (författare)
  • Assessment of Ventilation and Perfusion in Patients with COVID-19 Discloses Unique Information of Pulmonary Function to a Clinician : Case Reports of V/P SPECT
  • 2021
  • Ingår i: Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine. - : SAGE Publications. - 1179-5484. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • V/P SPECT from 4 consecutive patients with COVID-19 suggests that ventilation and perfusion images may be applied to diagnose or exclude pulmonary embolism, verify nonsegmental diversion of perfusion from the ventilated areas (dead space ventilation) that may represent inflammation of the pulmonary vasculature, detect the reversed mismatch of poor ventilation and better preserved perfusion (shunt perfusion) in bilateral pulmonary inflammation and indicate redistribution of lung perfusion (antigravitational hyperperfusion) due to cardiac congestion. V/P mismatch and reversed mismatch may be extensive enough to diminish dramatically preserved matching ventilation/perfusion and to induce severe hypoxemia in COVID-19.
  •  
8.
  • Bjöersdorff, Mimmi, et al. (författare)
  • Detection of lymph node metastases in patients with prostate cancer: Comparing conventional and digital F-18 -fluorocholine PET-CT using histopathology as a reference
  • 2022
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961 .- 1475-097X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Positron emission tomography-computed tomography (PET-CD with [F-18]-fluorocholine (FCH) is used to detect and stage metastatic lymph nodes in patients with prostate cancer. Improvements to hardware and software have recently been made. We compared the capability of detecting regional lymph node metastases using conventional and digital silicon photomultiplier (SiPM)-based PET-CT technology for FCH. Extended pelvic lymph node dissection (ePLND) histopathology was used as a reference method. Methods: The study retrospectively examined 177 patients with intermediate or high-risk prostate cancer who had undergone staging with FCH PET-CT before ePLND. Images were obtained with either the conventional Philips Gemini PET-CT (n = 93) or the digital SiPM-based GE Discovery MI PET-CT (n = 84) and compared. Results: Images that were obtained using the Philips Gemini PET-CT system showed 19 patients (20%) with suspected lymph node metastases, whereas the GE Discovery MI PET-CT revealed 36 such patients (43%). The sensitivity, specificity, and positive and negative predictive values were 0.3, 0.84, 0.47, and 0.72 for the Philips Gemini, while they were 0.58, 0.62, 0.31, and 0.83 for the GE Discovery MI, respectively. The areas under the curves in a receiver operating characteristic curve analysis were similar between the two PET-CT systems (0.57 for Philips Gemini and 0.58 for GE Discovery MI, p = 0.89). Conclusions: Marked differences in sensitivity and specificity were found for the different PET-CT systems, although the overall diagnostic performance was similar. These differences are probably due to differences in both hardware and software, including reconstruction algorithms, and should be considered when new technology is introduced.
  •  
9.
  • Bjöersdorff, Mimmi, et al. (författare)
  • Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for 18 F-fluorocholine PET-CT regarding image quality and interpretation
  • 2019
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recently, the block-sequential regularized expectation maximization (BSREM) reconstruction algorithm was commercially introduced (Q.Clear, GE Healthcare, Milwaukee, WI, USA). However, the combination of noise-penalizing factor (β), acquisition time, and administered activity for optimal image quality has not been established for 18 F-fluorocholine (FCH). The aim was to compare image quality and diagnostic performance of different reconstruction protocols for patients with prostate cancer being examined with 18 F-FCH on a silicon photomultiplier-based PET-CT. Thirteen patients were included, injected with 4 MBq/kg, and images were acquired after 1 h. Images were reconstructed with frame durations of 1.0, 1.5, and 2.0 min using β of 150, 200, 300, 400, 500, and 550. An ordered subset expectation maximization (OSEM) reconstruction with a frame duration of 2.0 min was used for comparison. Images were quantitatively analyzed regarding standardized uptake values (SUV) in metastatic lymph nodes, local background, and muscle to obtain contrast-to-noise ratios (CNR) as well as the noise level in muscle. Images were analyzed regarding image quality and number of metastatic lymph nodes by two nuclear medicine physicians. Results: The highest median CNR was found for BSREM with a β of 300 and a frame duration of 2.0 min. The OSEM reconstruction had the lowest median CNR. Both the noise level and lesion SUV max decreased with increasing β. For a frame duration of 1.5 min, the median quality score was highest for β 400-500, and for a frame duration of 2.0 min the score was highest for β 300-500. There was no statistically significant difference in the number of suspected lymph node metastases between the different image series for one of the physicians, and for the other physician the number of lymph nodes differed only for one combination of image series. Conclusions: To achieve acceptable image quality at 4 MBq/kg 18 F-FCH, we propose using a β of 400-550 with a frame duration of 1.5 min. The lower β should be used if a high CNR is desired and the higher if a low noise level is important.
  •  
10.
  • Borrelli, P., et al. (författare)
  • AI-based detection of lung lesions in F-18 FDG PET-CT from lung cancer patients
  • 2021
  • Ingår i: Ejnmmi Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background[F-18]-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) is a well-established modality in the work-up of patients with suspected or confirmed diagnosis of lung cancer. Recent research efforts have focused on extracting theragnostic and textural information from manually indicated lung lesions. Both semi-automatic and fully automatic use of artificial intelligence (AI) to localise and classify FDG-avid foci has been demonstrated. To fully harness AI's usefulness, we have developed a method which both automatically detects abnormal lung lesions and calculates the total lesion glycolysis (TLG) on FDG PET-CT.MethodsOne hundred twelve patients (59 females and 53 males) who underwent FDG PET-CT due to suspected or for the management of known lung cancer were studied retrospectively. These patients were divided into a training group (59%; n = 66), a validation group (20.5%; n = 23) and a test group (20.5%; n = 23). A nuclear medicine physician manually segmented abnormal lung lesions with increased FDG-uptake in all PET-CT studies. The AI-based method was trained to segment the lesions based on the manual segmentations. TLG was then calculated from manual and AI-based measurements, respectively and analysed with Bland-Altman plots.ResultsThe AI-tool's performance in detecting lesions had a sensitivity of 90%. One small lesion was missed in two patients, respectively, where both had a larger lesion which was correctly detected. The positive and negative predictive values were 88% and 100%, respectively. The correlation between manual and AI TLG measurements was strong (R-2 = 0.74). Bias was 42 g and 95% limits of agreement ranged from -736 to 819 g. Agreement was particularly high in smaller lesions.ConclusionsThe AI-based method is suitable for the detection of lung lesions and automatic calculation of TLG in small- to medium-sized tumours. In a clinical setting, it will have an added value due to its capability to sort out negative examinations resulting in prioritised and focused care on patients with potentially malignant lesions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 108
Typ av publikation
tidskriftsartikel (93)
konferensbidrag (5)
forskningsöversikt (4)
doktorsavhandling (3)
bokkapitel (3)
Typ av innehåll
refereegranskat (100)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Trägårdh, Elin (106)
Enqvist, Olof, 1981 (30)
Ulén, Johannes (25)
Edenbrandt, Lars, 19 ... (25)
Edenbrandt, Lars (24)
Minarik, David (23)
visa fler...
Pahlm, Olle (13)
Kaboteh, Reza (13)
Bjartell, Anders (12)
Wollmer, Per (10)
Oddstig, Jenny (10)
Kjölhede, Henrik, 19 ... (8)
Kaboteh, R. (8)
Ohlsson, Mattias (7)
Wagner, Galen S (7)
Lindgren Belal, Sara ... (7)
Borrelli, P. (7)
Poulsen, Mads (7)
Høilund-Carlsen, Pou ... (7)
Jögi, Jonas (6)
Bitzén, Ulrika (6)
Pettersson, Jonas (6)
Borrelli, Pablo (6)
Valind, Kristian (6)
Almquist, Helen (5)
Enqvist, Olof (5)
Garpered, Sabine (5)
Zackrisson, Sophia (4)
Liedberg, Fredrik (4)
Anand, Aseem (4)
Bjöersdorff, Mimmi (4)
Brolin, Gustav (4)
Lindner, Oliver (4)
Simoulis, Athanasios (3)
Ljungberg, Michael (3)
Hedeer, Fredrik (3)
Hindorf, Cecilia (3)
Engblom, Henrik (3)
Olsson, Berit (3)
Sörnmo, Leif (3)
Kahl, Fredrik, 1972 (3)
Reza Felix, Mariana (3)
Johnsson, Åse (Allan ... (3)
Sartor, Hanna (3)
Johansson, Lena (3)
Ly, John (3)
Sundlöv, Anna (3)
Ulen, J. (3)
Johnsson, Åse (3)
Hacker, Marcus (3)
visa färre...
Lärosäte
Lunds universitet (96)
Chalmers tekniska högskola (29)
Göteborgs universitet (21)
Umeå universitet (4)
Uppsala universitet (3)
Linköpings universitet (2)
visa fler...
Karolinska Institutet (2)
Högskolan i Halmstad (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (106)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (105)
Teknik (26)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy