SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Treanor Darren) srt2:(2024)"

Sökning: WFRF:(Treanor Darren) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunn, Catriona, et al. (författare)
  • Quantitative assessment of H&E staining for pathology: development and clinical evaluation of a novel system
  • 2024
  • Ingår i: Diagnostic Pathology. - : BMC. - 1746-1596. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundStaining tissue samples to visualise cellular detail and tissue structure is at the core of pathology diagnosis, but variations in staining can result in significantly different appearances of the tissue sample. While the human visual system is adept at compensating for stain variation, with the growth of digital imaging in pathology, the impact of this variation can be more profound. Despite the ubiquity of haematoxylin and eosin staining in clinical practice worldwide, objective quantification is not yet available. We propose a method for quantitative haematoxylin and eosin stain assessment to facilitate quality assurance of histopathology staining, enabling truly quantitative quality control and improved standardisation.MethodsThe stain quantification method comprises conventional microscope slides with a stain-responsive biopolymer film affixed to one side, called stain assessment slides. The stain assessment slides were characterised with haematoxylin and eosin, and implemented in one clinical laboratory to quantify variation levels.ResultsStain assessment slide stain uptake increased linearly with duration of haematoxylin and eosin staining (r = 0.99), and demonstrated linearly comparable staining to samples of human liver tissue (r values 0.98-0.99). Laboratory implementation of this technique quantified intra- and inter-instrument variation of staining instruments at one point in time and across a five-day period.ConclusionThe proposed method has been shown to reliably quantify stain uptake, providing an effective laboratory quality control method for stain variation. This is especially important for whole slide imaging and the future development of artificial intelligence in digital pathology.
  •  
2.
  • Godson, Lucy, et al. (författare)
  • Immune subtyping of melanoma whole slide images using multiple instance learning
  • 2024
  • Ingår i: Medical Image Analysis. - : ELSEVIER. - 1361-8415 .- 1361-8423. ; 93
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining early-stage prognostic markers and stratifying patients for effective treatment are two key challenges for improving outcomes for melanoma patients. Previous studies have used tumour transcriptome data to stratify patients into immune subgroups, which were associated with differential melanoma specific survival and potential predictive biomarkers. However, acquiring transcriptome data is a time-consuming and costly process. Moreover, it is not routinely used in the current clinical workflow. Here, we attempt to overcome this by developing deep learning models to classify gigapixel haematoxylin and eosin (H&E) stained pathology slides, which are well established in clinical workflows, into these immune subgroups. We systematically assess six different multiple instance learning (MIL) frameworks, using five different image resolutions and three different feature extraction methods. We show that pathology-specific self-supervised models using 10x resolution patches generate superior representations for the classification of immune subtypes. In addition, in a primary melanoma dataset, we achieve a mean area under the receiver operating characteristic curve (AUC) of 0.80 for classifying histopathology images into 'high' or 'low immune' subgroups and a mean AUC of 0.82 in an independent TCGA melanoma dataset. Furthermore, we show that these models are able to stratify patients into 'high' and 'low immune' subgroups with significantly different melanoma specific survival outcomes (log rank test, P < 0.005). We anticipate that MIL methods will allow us to find new biomarkers of high importance, act as a tool for clinicians to infer the immune landscape of tumours and stratify patients, without needing to carry out additional expensive genetic tests.
  •  
3.
  • Mcgenity, Clare, et al. (författare)
  • Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy
  • 2024
  • Ingår i: npj Digital Medicine. - : NATURE PORTFOLIO. - 2398-6352. ; 7:1
  • Forskningsöversikt (refereegranskat)abstract
    • Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease. This systematic review and meta-analysis included diagnostic accuracy studies using any type of AI applied to whole slide images (WSIs) for any disease. The reference standard was diagnosis by histopathological assessment and/or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model, with additional subgroup analyses also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSIs), representing many diseases. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4). There was heterogeneity in study design and 99% of studies identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns. Details on selection of cases, division of model development and validation data and raw performance data were frequently ambiguous or missing. AI is reported as having high diagnostic accuracy in the reported areas but requires more rigorous evaluation of its performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy