SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tryggvason Karl) srt2:(2010-2014)"

Sökning: WFRF:(Tryggvason Karl) > (2010-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yunying, et al. (författare)
  • A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses.
  • 2010
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 40:5, s. 1451-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of microbial components by TLR, key sensors of infection, leads to induction of inflammatory responses. We found that, in vivo, TLR4 engagement by LPS induces up-regulation of the class A scavenger receptors (SR) macrophage receptor with a collagenous structure (MARCO) and SR-A, which occurs, at least in the case of MARCO, via both MyD88-dependent and -independent pathways. When challenging mice with a low dose of LPS followed by a high dose, class A SR-deficient mice showed a higher survival rate than WT mice. This was paired with increased production of IL-10 and anti-LPS Ab, as well as increased activation status of marginal zone B cells. However, the receptors were not crucial for survival when challenging mice i.p. with Neisseria meningitidis or Listeria monocytogenes, but they were found to contribute to microbial capture and clearance. This indicates physiological significance for the up-regulation of class A SR during early stages of bacterial infection. Thus, we believe that we have revealed a mechanism where SR regulate the activation status of the immune system and are involved in balancing a proper immune response to infection. This regulation could also be important in maintaining tolerance since these receptors have been shown to be involved in regulation of self-reactivity.
  •  
2.
  • Dunér, Fredrik, et al. (författare)
  • Permeability, ultrastructural changes, and distribution of novel proteins in the glomerular barrier in early puromycin aminonucleoside nephrosis.
  • 2010
  • Ingår i: Nephron. Experimental nephrology. - : S. Karger AG. - 1660-2129. ; 116:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/AIMS: It is still unclear what happens in the glomerulus when proteinuria starts. Using puromycin aminonucleoside nephrosis (PAN) rats, we studied early ultrastructural and permeability changes in relation to the expression of the podocyte-associated molecules nephrin, α-actinin, dendrin, and plekhh2, the last two of which were only recently discovered in podocytes. METHODS: Using immune stainings, semiquantitative measurement was performed under the electron microscope. Permeability was assessed using isolated kidney perfusion with tracers. Possible effects of ACE inhibition were tested. RESULTS: By day 2, some patchy foot process effacement, but no proteinuria, appeared. The amount of nephrin was reduced in both diseased and normal areas. The other proteins showed few changes, which were limited to diseased areas. By day 4, foot process effacement was complete and proteinuria appeared in parallel with signs of size barrier damage. Nephrin decreased further, while dendrin and plekhh2 also decreased but α-actinin remained unchanged. ACE inhibition had no significant protective effect. CONCLUSIONS: PAN glomeruli already showed significant pathology by day 4, despite relatively mild proteinuria. This was preceded by altered nephrin expression, supporting its pivotal role in podocyte morphology. The novel proteins dendrin and plekhh2 were both reduced, suggesting roles in PAN, whereas α-actinin was unchanged.
  •  
3.
  • Gotha, Lara, et al. (författare)
  • Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury
  • 2014
  • Ingår i: American Journal of Physiology: Heart and Circulatory Physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 307:3, s. 337-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Delta 3/Delta 3) (M Delta 3/Delta 3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from M Delta 3/Delta 3 and wild-type mice. Proliferation of M Delta 3/Delta 3 SMC was 1.5x greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In M Delta 3/Delta 3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with M Delta 3/Delta 3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the M Delta 3/Delta 3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.
  •  
4.
  • He, Bing, et al. (författare)
  • Lmx1b and FoxC Combinatorially Regulate Podocin Expression in Podocytes
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:12, s. 2764-2777
  • Tidskriftsartikel (refereegranskat)abstract
    • Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G(0) transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lnnx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.
  •  
5.
  • Nishibori, Yukino, et al. (författare)
  • Glcci1 Deficiency Leads to Proteinuria
  • 2011
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 22:11, s. 2037-2046
  • Tidskriftsartikel (refereegranskat)abstract
    • Unbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli. In the fetal kidney, intense Glcci1 expression occurs at the capillary-loop stage of glomerular development. Using gene knockdown in zebrafish with morpholinos, morphants lacking Glcci1 function had collapsed glomeruli with foot-process effacement. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. Taken together, these data suggest that Glcci1 promotes the normal development and maintenance of podocyte structure and function.
  •  
6.
  • Perisic, Ljubica, et al. (författare)
  • Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics
  • 2012
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 82:10, s. 1071-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative a-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes.
  •  
7.
  • Rodriguez, Patricia Q., et al. (författare)
  • Novel INF2 mutation p. L77P in a family with glomerulopathy and Charcot-Marie-Tooth neuropathy
  • 2013
  • Ingår i: Pediatric nephrology (Berlin, West). - : Springer Science and Business Media LLC. - 0931-041X .- 1432-198X. ; 28:2, s. 339-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in inverted formin, FH2, and WH2 domain containing (INF2) are common causes of dominant focal segmental glomerulosclerosis. INF2 encodes a member of the diaphanous-related formin family, which regulates actin and microtubule cytoskeletons. Charcot-Marie-Tooth neuropathy (CMT) is a group of inherited disorders affecting peripheral neurons. Many reports have shown that glomerulopathy can associate with CMT. However, it has been unclear whether these two processes in the same individual represent one disorder or if they are two separate diseases. Recently, INF2 mutations were identified in 12 of 16 patients with CMT-associated glomerulopathy, suggesting that these mutations are a common cause of the dual phenotype. In this study, we report two cases of CMT-associated glomerulopathy that both showed INF2 mutations. A novel INF2 mutation, p. L77P, was identified in a family in which the dual phenotype was inherited in a dominant fashion. The pathogenic effect of p. L77P was proposed using a structural homology model. In addition, we identified a patient with a sporadic CMT-associated glomerulopathy carrying a known INF2 mutation: p. L128P. Our study confirms the link between INF2 mutations and CMT-associated glomerulopathy and widens the spectrum of pathogenic mutations.
  •  
8.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes
  • 2014
  • Ingår i: Diabetologia. - Berlin Heidelberg : Springer-Verlag. - 0012-186X .- 1432-0428. ; 57:6, s. 1143-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.METHODS: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10(-4) were followed up in 3,750 additional patients withtype 1 diabetes from seven studies.RESULTS: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10(-8)). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic associationobserved at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.CONCLUSIONS/INTERPRETATION: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
  •  
9.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
10.
  • Sistani, Laleh, et al. (författare)
  • Pdlim2 is a novel actin-regulating protein of podocyte foot processes
  • 2011
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 80:10, s. 1045-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • The slit diaphragm and the apical and basal membrane domains of podocytes are connected to each other by an actin-based cytoskeleton critical to the maintenance of the glomerular filtration barrier. In an effort to discover novel regulatory proteins of the podocyte foot process, we identified and characterized pdlim2, a member of the actin-associated LIM protein subfamily of cytosolic proteins typified by an N-terminal PDZ domain and a C-terminal LIM domain. In the kidney, the pdlim2 protein is highly specific for the glomerulus and podocyte foot processes as shown by RT-PCR, western blotting, immunofluorescence, and immunoelectron microscopy. In cultured podocytes, pdlim2 was associated with stress fibers and cortical actin. Pdlim2 seems to regulate actin dynamics in podocytes since stress fibers were stabilized in its presence. Mechanistically, pdlim2 interacts with two actin-associated podocyte proteins, alpha-actinin-4 and angiomotin-like-1, as shown by immunoprecipitation and yeast two-hybrid analyses. By semi-quantitative immunoelectron microscopy, there was a reduced expression of pdlim2 in podocytes of patients with minimal change nephrotic syndrome and membranous nephropathy, whereas its expression was unchanged in patients with focal segmental glomerulosclerosis. Hence, pdlim2 is a novel actin-regulating protein of podocyte foot processes that may have a role in the pathogenesis of glomerular diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Betsholtz, Christer (6)
Wernerson, Annika (5)
Hultenby, Kjell (5)
Uhlén, Mathias (4)
Ebarasi, Lwaki (2)
Groop, Leif (2)
visa fler...
Ahlqvist, Emma (2)
Sandholm, Niina (2)
Groop, Per Henrik (2)
Tuomilehto, Jaakko (2)
Forsblom, Carol (2)
Paterson, Andrew D (2)
Lajer, Maria (2)
Tarnow, Lise (2)
Brismar, Hjalmar (1)
Lohkamp, Bernhard (1)
Ladenvall, Claes (1)
Hadjadj, Samy (1)
Tregouet, David Alex ... (1)
Rossing, Peter (1)
Gu, Harvest F (1)
Colhoun, Helen M. (1)
Önfelt, Björn (1)
Hedin, Ulf (1)
Brismar, Kerstin (1)
Sundqvist, Johanna (1)
He, Liqun (1)
Haraldsson, Börje, 1 ... (1)
Lal, Mark (1)
Guiducci, Candace (1)
Norlin, Jenny (1)
Hirschhorn, Joel N. (1)
Karlsson, Mikael C I (1)
Jonsson, Ann-Beth (1)
Parikka, Mataleena (1)
Auer-Grumbach, Micha ... (1)
Kretzler, Matthias (1)
Taylor, Andrew (1)
Sun, Ying (1)
Marre, Michel (1)
Möllsten, Anna (1)
Wermeling, Fredrik (1)
Tran-Lundmark, Karin (1)
Zhao, Zhe (1)
Hanson, Robert L. (1)
Florez, Jose C. (1)
Alhenc-Gelas, Franço ... (1)
Falhammar, Henrik (1)
Williams, Winfred W (1)
Godson, Catherine (1)
visa färre...
Lärosäte
Karolinska Institutet (12)
Kungliga Tekniska Högskolan (4)
Uppsala universitet (3)
Lunds universitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy