SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tscharntke Teja) ;srt2:(2020-2023)"

Search: WFRF:(Tscharntke Teja) > (2020-2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Albrecht, Matthias, et al. (author)
  • The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield : a quantitative synthesis
  • 2020
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 23:10, s. 1488-1498
  • Journal article (peer-reviewed)abstract
    • Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.
  •  
2.
  • Alignier, Audrey, et al. (author)
  • Configurational crop heterogeneity increases within-field plant diversity
  • 2020
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:4, s. 654-663
  • Journal article (peer-reviewed)abstract
    • Increasing landscape heterogeneity by restoring semi-natural elements to reverse farmland biodiversity declines is not always economically feasible or acceptable to farmers due to competition for land. We hypothesized that increasing the heterogeneity of the crop mosaic itself, hereafter referred to as crop heterogeneity, can have beneficial effects on within-field plant diversity. Using a unique multi-country dataset from a cross-continent collaborative project covering 1,451 agricultural fields within 432 landscapes in Europe and Canada, we assessed the relative effects of compositional and configurational crop heterogeneity on within-field plant diversity components. We also examined how these relationships were modulated by the position within the field. We found strong positive effects of configurational crop heterogeneity on within-field plant alpha and gamma diversity in field interiors. These effects were as high as the effect of semi-natural cover. In field borders, effects of crop heterogeneity were limited to alpha diversity. We suggest that a heterogeneous crop mosaic may overcome the high negative impact of management practices on plant diversity in field interiors, whereas in field borders, where plant diversity is already high, landscape effects are more limited. Synthesis and applications. Our study shows that increasing configurational crop heterogeneity is beneficial to within-field plant diversity. It opens up a new effective and complementary way to promote farmland biodiversity without taking land out of agricultural production. We therefore recommend adopting manipulation of crop heterogeneity as a specific, effective management option in future policy measures, perhaps adding to agri-environment schemes, to contribute to the conservation of farmland plant diversity.
  •  
3.
  • Batáry, Péter, et al. (author)
  • Biologia Futura : landscape perspectives on farmland biodiversity conservation
  • 2020
  • In: Biologia Futura. - : Springer Science and Business Media LLC. - 2676-8615 .- 2676-8607. ; 71:1-2, s. 9-18
  • Research review (peer-reviewed)abstract
    • European nature conservation has a strong focus on farmland harbouring threatened species that mainly co-occur with traditional agriculture shaped way before the green revolution. Increased land-use intensity in agriculture has caused an alarming decline in farmland biodiversity during the last century. How can a landscape perspective contribute to fostering our understanding on causes and consequences of farmland biodiversity decline and improving the effectiveness of conservation measures? To answer these questions, we discuss the importance of landscape compositional and configurational heterogeneity, understanding ecological mechanisms determining how landscape structure affects farmland biodiversity and considering the interplay of farmland biodiversity and ecosystem service conservation.
  •  
4.
  • Herbertsson, Lina, et al. (author)
  • Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes
  • 2021
  • In: Plant Ecology and Evolution. - : Societe Royale de Botanique de Belgique. - 2032-3913 .- 2032-3921. ; 154:3, s. 341-350
  • Journal article (peer-reviewed)abstract
    • Background and aims: Agricultural intensification and loss of farmland heterogeneity have contributed to population declines of wild bees and other pollinators, which may have caused subsequent declines in insect-pollinated wild plants.Material and methods: Using data from 37 studies on 22 pollinator-dependent wild plant species across Europe, we investigated whether flower visitation and seed set of insect-pollinated plants decline with an increasing proportion of arable land within 1 km.Key results: Seed set increased with increasing flower visitation by bees, most of which were wild bees, but not with increasing flower visitation by other insects. Increasing proportion of arable land had a strongly variable effect on seed set and flower visitation by bees across studies.Conclusion:Factors such as landscape configuration, local habitat quality, and temporally changing resource availability (e.g. due to mass-flowering crops or honey bee hives) could have modified the effect of arable land on pollination. While our results highlight that the persistence of wild bees is crucial to maintain plant diversity, we also show that pollen limitation due to declining bee populations in homogenized agricultural landscapes is not a universal driver causing parallel losses of bees and insect-pollinated plants. 
  •  
5.
  • Hutchinson, Louise A., et al. (author)
  • Using ecological and field survey data to establish a national list of the wild bee pollinators of crops
  • 2021
  • In: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 315
  • Journal article (peer-reviewed)abstract
    • The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.
  •  
6.
  • Klatt, Björn K., 1980-, et al. (author)
  • Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences
  • 2023
  • In: Ecotoxicology. - New York, NY : Springer. - 0963-9292 .- 1573-3017. ; 32:10, s. 1247-1256
  • Journal article (peer-reviewed)abstract
    • Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape’s production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.
  •  
7.
  • Senapathi, Deepa, et al. (author)
  • Wild insect diversity increases inter-annual stability in global crop pollinator communities
  • 2021
  • In: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954 .- 0962-8452. ; 288:1947
  • Journal article (peer-reviewed)abstract
    • While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view