SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsuchiya Keisuke) "

Sökning: WFRF:(Tsuchiya Keisuke)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kobayashi, Yuki, et al. (författare)
  • Differential expressions of melanocortin receptor subtypes in melanophores and xanthophores of barfin flounder
  • 2010
  • Ingår i: General and Comparative Endocrinology. - : Elsevier BV. - 0016-6480 .- 1095-6840. ; 168:1, s. 133-142
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha-Melanocyte-stimulating hormone (alpha-MSH) is a member of the melanocortin (MC) family, and the MC receptor (MCR) is a member of the G protein-coupled receptor (GPCR) superfamily. We previously found that in barfin flounder, a flatfish, alpha-MSH with an acetyl group at the N-terminus stimulated pigment dispersion in xanthophores; however, this effect was not observed in melanophores. Therefore, the present study was undertaken to find which MCR subtypes are expressed in these pigment cells in order to elucidate how acetylation regulates activities of alpha-MSH-related peptides. Here, we also report the cloning of Mc1r and Mc5r from barfin flounder. Three types of cells-melanophores, xanthophores, and nonchromatophoric dermal cells-were isolated from the skin samples collected from the dorsal fin. These cells were then tested for the expression of Mc1r and Mc5r as well as Mc2r and Mc4r that we had previously cloned. Mc1r and Mc5r transcripts were detected in melanophores, and a sole Mc5r transcript was detected in xanthophores. We had previously found that the efficiency of alpha-MSH was higher than that of desacetyl-alpha-MSH for pigment dispersion in xanthophores. Acetylated MSH peptide may have increased binding affinity to MC5R, whereas alpha-MSH lacks melanin-dispersing activity. Increasing evidences indicate that many GPCRs form heterodimers, and this may affect the affinity of the ligand for the corresponding GPCR. Taken together, the expression of two different Mcr subtypes in melanophores may suggest that a heterodimer consisting of MC1R and MC5R may have a low binding affinity toward alpha-MSH. The present results clarify the types of MCRs that are expressed in melanophores and xanthophores of barfin flounder; furthermore, the results provide important clues about the functional regulation of alpha-MSH-related peptides.
  •  
2.
  • Kobayashi, Yuki, et al. (författare)
  • Food deprivation increases the expression of melanocortin-4 receptor in the liver of barfin flounder, Verasper moseri
  • 2008
  • Ingår i: General and Comparative Endocrinology. - : Elsevier BV. - 0016-6480 .- 1095-6840. ; 155:2, s. 280-287
  • Tidskriftsartikel (refereegranskat)abstract
    • The melanocortin (MC) system is composed of melanocyte-stimulating hormone, adrenocorticotropic hormone and their receptors. The MC system has a role in both pigmentation and the regulation of energy homeostasis, in which MC4R, one of the five MC receptors, has a key role. Interestingly, the barfin flounder (Pleuronectiformes) reared with a black background shows retarded growth compared to white background-reared fish, which could be associated with the MC system because of its dual role in regulating pigmentation and energy status. Here, we cloned MC4R and assessed the effects of feeding status on its expression in barfin flounder. Barfin flounder MC4R. was composed of 325 amino acids and showed the highest sequence identity to MC4R of fugu (85%), followed by rainbow trout (82%), zebrafish (79%), goldfish (78%), dogfish (71%), chickens (67%), humans (67%) and mice (65%). Among 18 different tissues examined, the predominant expression of MC4R was observed in the brain, liver, testis and ovary as detected with reverse transcription PCR. Food deprivation resulted in a 4-fold increase in the number of MC4R transcripts in the liver, whereas no change was observed in the brain between fasted fish and fed controls. These results suggest that the NIC system including MC4R is associated with energy homeostasis in barfin flounder and that peripheral tissues could play a role in this regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Schiöth, Helgi B. (2)
Takahashi, Akiyoshi (2)
Kobayashi, Yuki (2)
Tsuchiya, Keisuke (2)
Yamanome, Takeshi (2)
Kawauchi, Hiroshi (1)
Lärosäte
Uppsala universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy