SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tumer Zeynep) srt2:(2020-2021)"

Sökning: WFRF:(Tumer Zeynep) > (2020-2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krab, Lianne C., et al. (författare)
  • Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
  • 2020
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 139:5, s. 575-592
  • Tidskriftsartikel (refereegranskat)abstract
    • RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
  •  
2.
  • Rodriguez-Palmero, Agusti, et al. (författare)
  • DLG4-related synaptopathy : a new rare brain disorder
  • 2021
  • Ingår i: Genetics in Medicine. - : Elsevier BV. - 1098-3600 .- 1530-0366. ; 23:5, s. 888-899
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposePostsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.MethodsThe clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.ResultsThe clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.ConclusionThe present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy