SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tyagi V. K.) srt2:(2010-2014)"

Sökning: WFRF:(Tyagi V. K.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Jayakumar, O. D., et al. (författare)
  • Tunable Ferromagnetism accompanied by Morphology Control in Li-doped Zn0.97Ni0.03O
  • 2010
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 114:41, s. 17428-17433
  • Tidskriftsartikel (refereegranskat)abstract
    • We report morphological and ferromagnetic property control in ZnO nanorod structures by an optimum doping of Ni and Li. Nanostructures of Zn0.97-xNi0.03LixO (x = 0, 0.03, 0.05, 0.08, and 0.10) are prepared by a solvothermal method. High aspect ratio (5-15) ZnO nanorods transform to particles (with 1-3 aspect ratio) influenced by 3 at. % Ni substitution in ZnO (Zn0.97Ni0.03O). It is remarkable to note that the Zn1.97Ni0.03O particles completely retain the nanorod shape with significantly increased aspect ratio (15-30) when 3 at.c/a Li ions are codoped in (Zn0.99Li0.03Ni0.30O). Li substitution tits enhances ferromagnetism with largest magnetization (0.8 emu.g(-1)) observed for Zn0.94Li0.03Ni0.03O. For Li concentration >3 at.%, the aspect ratio as well as the magnetization decreased considerably. These experimental observations are explained by first-principles modeling. At low Li-on-Zn acceptor concentrations, the total magnetization is increased by lower Ni d-state populations, whereas at higher Li concentrations the population of ZnO host states decreases the ferromagnetism by induced magnetic moments on the oxygens. We discuss the significant implications of these results on the nanorods structures of room temperature ferromagnetic materials, which are expected to play pivotal role in developing spintronic devices.
  •  
3.
  • Persson, Clas, et al. (författare)
  • Morphology and Magnetic Coupling in ZnO:Co and ZnO:Ni Co-Doped with Li
  • 2011
  • Ingår i: Acta Physica Polonica. A. - 0587-4246 .- 1898-794X. ; 119:2, s. 95-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Zn0.95Co0.05O and Zn0.97Ni0.03O nanorods, prepared by a solvothermal method, show intriguing morphology and magnetic properties when co-doped with Li. At low and moderate Li incorporation (below 10 and 3 at.% Li in the Co- and Ni-doped samples, respectively) the rod aspect ratio is increased and room temperature ferromagnetic properties are enhanced, whereas the ferromagnetic coupling in Zn0.97Ni0.03O is decreased for Li concentrations > 3 at.%. First-principles theoretical analyses demonstrate that Li co-doping has primarily two effect 3 in bulk Zn1-xMxO (with M = Co or Ni). First, the Li-on-Zn acceptors increase the local magnetic moment by depopulating the M 3d minority spin-states. The magnetic coupling is Ruderman-Kittel-Kasuya-Yosida-like both without and with Li co-doping. Second, Li-on-Zn prefer to be close to the M atoms to compensate the M-O bonds and to locally depopulate the 3d states, and this will help forming high aspect nanostructures. The observed room temperature ferromagnetism in Li co-doped Zn1-xMxO nanorods can therefore be explained by the better rod morphology in combination with ionizing the magnetic M atoms.
  •  
4.
  • Tyagi, Bhishma, et al. (författare)
  • Surface Energy Exchanges during Pre-monsoon Thunderstorm Activity over a Tropical Station Kharagpur
  • 2014
  • Ingår i: Pure and Applied Geophysics. - : Springer Science and Business Media LLC. - 0033-4553 .- 1420-9136. ; 171:7, s. 1445-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study an attempt has been made to understand the variation of surface energy fluxes such as net radiation, sensible, latent and soil heat during different epochs of thunderstorm activity at Kharagpur. The study also focuses in delineating the difference in the surface energy budget from the days of thunderstorm activity to fair weather days in the pre-monsoon months (April and May) which is locally known as thunderstorm season. For this purpose, experimental data obtained from the Severe Thunderstorms- Observations and Regional Modeling (STORM) programme during pre-monsoon months of 2007, 2009 and 2010 at Kharagpur (22A degrees 30'N, 87A degrees 20'E), West Bengal, India are used. The present study reveals quick response, in the order of a few days, in the variations of transport of energy fluxes at soil-atmosphere interface to the upper atmosphere vis-A -vis to the occurrence of thunderstorm activity. Rise of surface sensible heat flux to the level of surface latent heat flux a day or two before the occurrence of a thunderstorm has been identified as a precursor signal for the thunderstorm occurrence over Kharagpur. Distinguishable differences are found in the partitioning of the surface energy fluxes to that of net radiation between thunderstorm and non-thunderstorm days. The present study reveals more Bowen's ratio during thunderstorm days to that of nonthunderstorm days. These results are useful in validating mesoscale model simulations of thunderstorm activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy