SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Usher Christopher) srt2:(2022)"

Sökning: WFRF:(Usher Christopher) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M 83 as observed with MUSE II. Analysis of the H II region population : Ionisation budget and pre-SN feedback
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Energy and momentum injected by young, massive stars into the surrounding gas play an important role in regulating further star formation and in determining the galaxy's global properties. Before supernovae begin to explode, stellar feedback consists of two main processes: radiation pressure and photoionisation.Aims. We study pre-supernova feedback and constrain the leakage of Lyman continuum (LyC) radiation in a sample of similar to 4700 H II regions in the nearby spiral galaxy M 83. We explore the impact that the galactic environment and intrinsic physical properties (metallicity, extinction, and stellar content) have on the early phases of H II region evolution.Methods. We combined VLT/MUSE observations of the ionised gas with young star cluster physical properties derived from HST multiwavelength data. We identified H II regions based on their Hα emission, and cross-matched the sample with planetary nebulae and supernova remnants to assess contaminant sources and identify evolved H II regions. We also spectroscopically identified Wolf-Rayet (WR) stars populating the star-forming regions. We estimated the physical properties of the H II regions (luminosity, size, oxygen abundance, and electron density). For each H II region, we computed the pressure of ionised gas (Pion) and the direct radiation pressure (Pdir) acting in the region, and investigated how they vary with galactocentric distance, with the physical properties of the region, and with the pressure of the galactic environment (PDE). For a subset of similar to 500 regions, we also investigated the link between the pressure terms and the properties of the cluster population (age, mass, and LyC flux). By comparing the LyC flux derived from Hα emission with the one modelled from their clusters and WRs, we furthermore constrained any escape of LyC radiation (fesc).Results. We find that Pion dominates over Pdir by at least a factor of 10 on average over the disk. Both pressure terms are strongly enhanced and become almost comparable in the central starburst region. In the disk (R ≥ 0.15Re), we observe that Pdir stays approximately constant with galactocentric distance. We note that Pdir is positively correlated with an increase in radiation field strength (linked to the negative metallicity gradient in the galaxy), while it decreases in low extinction regions, as is expected if the amount of dust to which the momentum can be imparted decreases. In addition, Pion decreases constantly for increasing galactocentric distances; this trend correlates with the decrease in extinction - indicative of more evolved and thus less compact regions - and with changes in the galactic environment (traced by a decrease in PDE). In general, we observe that H II regions near the centre are underpressured with respect to their surroundings, whereas regions in the rest of the disk are overpressured and hence expanding. We find that regions hosting younger clusters or those that have more mass in young star clusters have a higher internal pressure, indicating that clustered star formation likely plays a dominant role in setting the pressure. Finally, we estimate that only 13% of H II regions hosting young clusters and WR stars have fesc ≥ 0, which suggests that star formation taking place outside young clusters makes a non-negligible contribution to ionising H II regions.
  •  
2.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M83 as observed with MUSE I. Overview, an unprecedented view of the stellar and gas kinematics and evidence of outflowing gas
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stars inject energy and momentum into the surrounding gas, creating a multi-phase interstellar medium (ISM) and regulating further star formation. The main challenge of studying stellar feedback proves to be the variety of scales spanned by this phenomenon, ranging from the immediate surrounding of the stars (H II regions, 10s pc scales) to galactic-wide kiloparsec scales.Aims. We present a large mosaic (3.8 × 3.8 kpc) of the nearby spiral galaxy M83, obtained with the MUSE instrument at ESO Very Large Telescope. The integral field spectroscopy data cover a large portion of the optical disk at a resolution of ∼20 pc, allowing the characterisation of single H II regions while sampling diverse dynamical regions in the galaxy.Methods. We obtained the kinematics of the stars and ionised gas, and compared them with molecular gas kinematics observed in CO(2-1) with the ALMA telescope array. We separated the ionised gas into H II regions and diffuse ionised gas (DIG) and investigated how the fraction of Hα luminosity originating from the DIG (fDIG) varies with galactic radius.Results. We observe that both stars and gas trace the galactic disk rotation, as well as a fast-rotating nuclear component (30″ ≃ 700 pc in diameter), likely connected to secular processes driven by the galactic bar. In the gas kinematics, we observe a stream east of the nucleus (50″ ≃ 1250 pc in size), redshifted with respect to the disk. The stream is surrounded by an extended ionised gas region (1000 × 1600 pc) with enhanced velocity dispersion and a high ionisation state, which is largely consistent with being ionised by slow shocks. We interpret this feature as either the superposition of the disk and an extraplanar layer of DIG, or as a bar-driven inflow of shocked gas. A double Gaussian component fit to the Hα line also reveals the presence of a nuclear biconic structure whose axis of symmetry is perpendicular to the bar. The two cones (20″ ≃ 500 pc in size) appear blue- and redshifted along the line of sight. The cones stand out for having an Hα emission separated by up to 200 km s−1 from that of the disk, and a high velocity dispersion ∼80–200 km s−1. At the far end of the cones, we observe that the gas is consistent with being ionised by shocks. These features had never been observed before in M83; we postulate that they are tracing a starburst-driven outflow shocking into the surrounding ISM. Finally, we obtain fDIG ∼ 13% in our field of view, and observe that the DIG contribution varies radially between 0.8 and 46%, peaking in the interarm region. We inspect the emission of the H II regions and DIG in ‘BPT’ diagrams, finding that in H II regions photoionisation accounts for 99.8% of the Hα flux, whereas the DIG has a mixed contribution from photoionisation (94.9%) and shocks (5.1%).
  •  
3.
  • Saracino, S., et al. (författare)
  • A black hole detected in the young massive LMC cluster NGC 1850
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:2, s. 2914-2924
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection of a black hole (NGC 1850 BH1) in the ∼100-Myr-old massive cluster NGC 1850 in the Large Magellanic Cloud. It is in a binary system with a main-sequence turn-off star (4.9 ± 0.4 M⊙), which is starting to fill its Roche lobe and is becoming distorted. Using 17 epochs of Very Large Telescope/Multi-Unit Spectroscopic Explorer observations, we detected radial velocity variations exceeding 300 km s−1 associated with the target star, linked to the ellipsoidal variations measured by the fourth phase of the Optical Gravitational Lensing Experiment in the optical bands. Under the assumption of a semidetached system, the simultaneous modelling of radial velocity and light curves constrains the orbital inclination of the binary to 38° ± 2°, resulting in a true mass of the unseen companion of 11.1+2.1−2.4M⊙11.1−2.4+2.1M⊙⁠. This represents the first direct dynamical detection of a black hole in a young massive cluster, opening up the possibility of studying the initial mass function and the early dynamical evolution of such compact objects in high-density environments.
  •  
4.
  • Sirressi, Mattia, et al. (författare)
  • CLusters in the UV as EngineS (CLUES). I. Survey Presentation and FUV Spectral Analysis of the Stellar Light
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 164:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The CLusters in the Uv as EngineS (CLUES) survey is a Cosmic Origins Spectrograph (COS) campaign aimed at acquiring the 1130–1770 Å rest-frame spectroscopy of very young (<20 Myr) and massive (>104 M⊙) star clusters in galaxies that are part of the Hubble treasury program Legacy ExtraGalactic UV Survey. In this first paper of a series, we describe the CLUES sample consisting of 20 young star clusters and report their physical properties as derived by both multiwavelength photometry and far-UV (FUV) spectroscopy with Hubble Space Telescope. Thanks to the synergy of the two different data sets, we build a coherent picture of the diverse stellar populations found in each region (with sizes of 40–160 pc). We associate the FUV-brightest stellar population to the central targeted star cluster and the other modeled population to the diffuse stars that are included in the COS aperture. We observe better agreement between photometric and spectroscopic ages for star clusters younger than 5 Myr. For clusters older than 5 Myr, photometry and spectroscopy measurements deviate, with the latter producing older ages, due to the degeneracy of photometric models. FUV spectroscopy enables us to better constrain the stellar metallicities, a parameter that optical colors are insensitive to. Finally, the derived E(B − V) are quite similar, with a tendency for FUV spectroscopy to favor solutions with higher extinctions. The recovered masses are in agreement within a factor of 2 for all of the clusters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy