SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vachon Dominic) srt2:(2018)"

Sökning: WFRF:(Vachon Dominic) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kokic, Jovana, et al. (författare)
  • High spatial variability of gas transfer velocity in streams revealed by turbulence measurements
  • 2018
  • Ingår i: Inland Waters. - : Taylor & Francis. - 2044-2041 .- 2044-205X. ; 8:4, s. 461-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams are major sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere, but current large-scale estimates are associated with high uncertainties because knowledge concerning the spatiotemporal control on stream emissions is limited. One of the largest uncertainties derives from the choice of gas transfer velocity (k(600)), which describes the physical efficiency of gas exchange across the water-atmosphere interface. This study therefore explored the variability in k(600 )and subsequent CO2 and CH4 emission rates within and across streams of different stream order (SO). We conducted, for the first time in streams, direct turbulence measurements using an acoustic Doppler velocimeter (ADV) to determine the spatial variability in k(600) across a variety of scales with a consistent methodology. The results show high spatial variability in k(600) and corresponding CO2 and CH4 emissions at small spatial scales, both within stream reaches and across SO, especially during high discharge. The k(600) was positively related to current velocity and Reynolds number. By contrast, no clear relationship was found between k(600) and specific stream characteristics such as width and depth, which are parameters often used in empirical models of k(600). Improved understanding of the small-scale variability in the physical properties along streams, especially during high discharge, is therefore an important step to reduce the uncertainty in existing gas transfer models and emissions for stream systems. The ADV method was a useful tool for revealing spatial variability in this work, but it needs further development. We recommend that future studies conduct measurements over shorter time periods (e.g., 10-15 min instead of 40 min) and at more sites across the reach of interest, and thereby derive more reliable mean-reach k(600) as well as more information about controls on the spatial variability in k(600).
  •  
2.
  • Prairie, Yves T., et al. (författare)
  • Greenhouse Gas Emissions from Freshwater Reservoirs : What Does the Atmosphere See?
  • 2018
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 21:5, s. 1058-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely constrained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, ´€˜what the atmosphere sees’. The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy