SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vaivads Andris) srt2:(2005-2009)"

Search: WFRF:(Vaivads Andris) > (2005-2009)

  • Result 1-10 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aikio, A. T., et al. (author)
  • EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary
  • 2008
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:1, s. 87-105
  • Journal article (peer-reviewed)abstract
    • The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromso (66.6 degrees cgmLat) and Longyearbyen (75.2 degrees cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degrees cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm. During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R-E mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations. The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degrees during similar to 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.
  •  
2.
  •  
3.
  • Backrud, Marie, et al. (author)
  • Interferometric Identification of Ion Acoustic Broadband Waves in the Auroral Region : CLUSTER Observations
  • 2005
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 32:21
  • Journal article (peer-reviewed)abstract
    • [1] We determine the phase velocity and k vector for parallel and oblique broadband extremely low frequency, ELF, waves on nightside auroral magnetic field lines at altitudes around 4.6 RE. We use internal burst mode data from the EFW electric field and wave instrument onboard the Cluster spacecraft to retrieve phase differences between the four probes of the instrument. The retrieved characteristic phase velocity is of the order of the ion acoustic speed and larger than the thermal velocity of the protons. The typical wavelength obtained from interferometry is around the proton gyro radius and always larger than the Debye length. We find that in regions with essentially no suprathermal electrons above a few tens of eV the observed broadband waves above the proton gyro frequency are consistent with upgoing ion acoustic and oblique ion acoustic waves.
  •  
4.
  • Baumjohann, W., et al. (author)
  • Dynamics of thin current sheets : Cluster observations
  • 2007
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:6, s. 1365-1389
  • Research review (peer-reviewed)abstract
    • The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models. and looks for these signatures in Cluster data from two events. For both events transient magnetic si-natures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of J(y) and the corresponding field-aligned currents Event I covers a pseudo-breakup, developing only at high latitudes. First, a thin (H approximate to 2000Km approximate to 2 rho(i), with pi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H approximate to 1000-2000 km approximate to 1-2 rho(i)), crossed about 30 min later, is found to be active. with fast earthward ion flow bursts (300-600 km/s) and simultaneous large amplitude fluctuations (delta B/B similar to 1). In the quiet CS the current density J(y) is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300-600 km/s), observed during the active period. maximizes near or at the CS center. During the active phase of Event I no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active period. While the overall partial derivative Bz/partial derivative t is too weak to accelerate ions up to the observed velocities, short duration partial derivative B-z/partial derivative t can produce the azimuthal electric field requested to account for the observed ion flow bursts. The corresponding large amplitude perturbations are shown to move eastward. which suggests that the reduction in the tail current could be achieved via a series of eastward traveling partial dipolarisations/CD. The second event is much more active than the first one. The observed flapping of the CS corresponds to an azimuthally propagating wave. A reversal in the proton flow velocity, from 1000 to + 1000 km/s, is measured by CODIF. The overall flow reversal, the associated change in the sign of B-z and the relationship between B-x and B-y suggest that the spacecraft are moving with respect to an X-line and its associated Hall-structure. Yet, a simple tailward retreat of a large-scale X-line cannot account for all the observations, since several flow reversals are observed. These quasi-periodic flow reversals can also be associated with an azimuthal motion of the low frequency oscillations. Indeed, at the beginning of the interval B-y varies rapidly along the Y direction; the magnetic signature is three-dimensional and essentially corresponds to a structure of filamentary field-aligned current, moving eastward at similar to 200 km/s. The transverse size of the structure is similar to 1000 km. Similar structures are observed before and after. Thesefilamentary structures are consistent with an eastward propagation of an azimuthal modulation associated with a current system J(y), J(x). During Event 1, signatures of filamentary field-aligned current structures are also observed, in association with modulations of J(y). Hence, for both events the structure of the magnetic fields and currents is three-dimensional.
  •  
5.
  • Behlke, Rico, 1976- (author)
  • Dissipation at the Earth's Quasi-Parallel Bow Shock
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.
  •  
6.
  • Chen, Li-Jen, et al. (author)
  • Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection
  • 2008
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A12, s. A12213-
  • Journal article (peer-reviewed)abstract
    • We have identified a spatially extended electron current sheet (ECS) and its adjacent magnetic island during a magnetotail reconnection event with no appreciable guide field. This finding is based on data from the four Cluster spacecraft and is enabled by detailed maps of electron distribution functions and DC electric fields within the diffusion region. The maps are developed using two-dimensional particle-in-cell simulations with a mass ratio m(i)/m(e) = 800. One spacecraft crossed the ECS earthward of the reconnection null and, together with the other three spacecraft, registered the following properties: (1) The ECS is colocated with a layer of bipolar electric fields normal to the ECS, pointing toward the ECS, and with a half width less than 8 electron skin depths. (2) In the inflow region up to the ECS and separatrices, electrons have a temperature anisotropy (Te-parallel to/Te-perpendicular to > 1), and the anisotropy increases toward the ECS. (3) Within about 1 ion skin depth (d(i)) above and below the ECS, the electron density decreases toward the ECS by a factor of 3-4, reaching a minimum at edges of the ECS, and has a local distinct maximum at the ECS center. (4) A di-scale magnetic island is attached to the ECS, separating it from another reconnection layer. Our simulations established that the electric field normal to the ECS is due to charge imbalance and is of the ECS scale, and ions exhibit electron-scale structures in response to this electric field.
  •  
7.
  • Chen, Li-Jen, et al. (author)
  • Observation of energetic electrons within magnetic islands
  • 2008
  • In: Nature Physics. - : Nature Publishing Group. - 1745-2473 .- 1745-2481. ; 4:1, s. 19-23
  • Journal article (peer-reviewed)abstract
    • Magnetic reconnection is the underlying process that releases impulsively an enormous amount of magnetic energy(1) in solar flares(2,3), flares on strongly magnetized neutron stars(4) and substorms in the Earth's magnetosphere(5). Studies of energy release during solar flares, in particular, indicate that up to 50% of the released energy is carried by accelerated 20-100 keV suprathermal electrons(6-8). How so many electrons can gain so much energy during reconnection has been a long-standing question. A recent theoretical study suggests that volume-filling contracting magnetic islands formed during reconnection can produce a large number of energetic electrons(9). Here we report the first evidence of the link between energetic electrons and magnetic islands during reconnection in the Earth's magnetosphere. The results indicate that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraint on theories of electron acceleration.
  •  
8.
  • Chust, T., et al. (author)
  • A low frequency receiver for the Solar Orbiter mission
  • 2006
  • Conference paper (peer-reviewed)abstract
    • The Low Frequency Receiver (LFR) is one of the main subsystems of the Radio and Plasma Wave (RPW) experiment that we wish to submit in response to a possible Announcement of Opportunity for the Solar Orbiter payload. It will be connected to two different sensor units: an electric antenna unit and a magnetic search coil unit that will be optimized to perform both quasi-DC and high frequency measurements. The LFR is dedicated to analyse and process onboard the low frequency signals from a fraction of a Hertz up to -10 kHz, covering in situ measurements of the electromagnetic waves of the solar wind and extended corona. Due to the telemetry constraints different strategies for analysing and transmitting the data have to be defined, implying different onboard working modes. The design and the technological characteristics of the LFR are presented.
  •  
9.
  • Deng, X. H., et al. (author)
  • Dynamics and waves near multiple magnetic null points in reconnection diffusion region
  • 2009
  • In: Journal of Geophysical Research. - : Blackwell Publishing. - 0148-0227 .- 2156-2202. ; 114:7
  • Journal article (peer-reviewed)abstract
    • Identifying the magnetic structure in the region where the magnetic field lines break and how reconnection happens is crucial to improving our understanding of three-dimensional reconnection. Here we show the in situ observation of magnetic null structures in the diffusion region, the dynamics, and the associated waves. Possible spiral null pair has been identified near the diffusion region. There is a close relation among the null points, the bipolar signature of the Z component of the magnetic field, and enhancement of the flux of energetic electrons up to 100 keV. Near the null structures, whistler-mode waves were identified by both the polarity and the power law of the spectrum of electric and magnetic fields. It is found that the angle between the fans of the nulls is quite close to the theoretically estimated maximum value of the group-velocity cone angle for the whistler wave regime of reconnection.
  •  
10.
  • Hamrin, Maria, et al. (author)
  • GALS - Gradient Analysis by Least Squares
  • 2008
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:11, s. 3491-3499
  • Journal article (peer-reviewed)abstract
    • We present a method, GALS (Gradient Analysis by Least Squares) for estimating the gradient of a physical field from multi-spacecraft observations. To obtain the best possible spatial resolution, the gradient is estimated in the frame of reference where structures in the field are essentially locally stationary. The estimates are refined iteratively by a least squares method. We show that GALS is not very sensitive to the spacecraft configuration and resolves structures much smaller than the characteristic size of the spacecraft distribution. Furthermore, GALS requires little user input. GALS has been tested on synthetic magnetic field data and data from the Cluster FGM instrument. GALS will also be useful for other types of data. The results indicate that GALS is robust and superior to the curlometer method for estimating the current from magnetic field measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view