SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Valentin MA) srt2:(2020-2023)"

Sökning: WFRF:(Valentin MA) > (2020-2023)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Dominguez-Valentin, M, et al. (författare)
  • No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study
  • 2021
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. Objective. To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. Methods. Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. Results. Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. Conclusion. Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.
  •  
8.
  •  
9.
  • He, L., et al. (författare)
  • Biomass valorization toward sustainable asphalt pavements : Progress and prospects
  • 2023
  • Ingår i: Waste Management. - : Elsevier. - 0956-053X .- 1879-2456. ; 165, s. 159-178
  • Tidskriftsartikel (refereegranskat)abstract
    • To cope with the global climate crisis and assist in achieving the carbon neutrality, the use of biomass materials to fully or partially replace petroleum-based products and unrenewable resources is expected to become a widespread solution. Based on the analysis of the existing literature, this paper firstly classified biomass materials with potential application prospects in pavement engineering according to their application and summarized their respective preparation methods and characteristics. The pavement performance of asphalt mixtures with biomass materials was analyzed and summarized, and the economic and environmental benefits of bio-asphalt binder were evaluated. The analysis shows that pavement biomass materials with potential for practical application can be divided into three categories: bio-oil, bio-fiber, and bio-filler. Adding bio-oil to modify or extend the virgin asphalt binder can mostly improve the low temperature performance of asphalt binder. Adding styrene-butadienestyrene (SBS) or other preferable bio-components for composite modification will have a further improved effect. Most of the asphalt mixtures prepared by using bio-oil modified asphalt binders have improved the low temperature crack resistance and fatigue resistance of asphalt mixtures, but the high temperature stability and moisture resistance may decrease. As a rejuvenator, most bio-oils can restore the high and low temperature performance of aged asphalt and recycled asphalt mixture, and improve fatigue resistance. Adding bio-fiber could significantly improve the high temperature stability, low temperature crack resistance and moisture resistance of asphalt mixtures. Biochar as a bio-filler can slow down the asphalt aging process and some other bio-fillers can improve the high temperature stability and fatigue resistance of asphalt binders. Through calculation, it is found that the cost performance of bio-asphalt has the ability to surpass conventional asphalt and has economic benefits. The use of biomass materials for pavements not only reduces pollutants, but also reduces the dependence on petroleum-based products. It has significant environmental benefits and development potential.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy