SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van Damme C. Corral) srt2:(2022)"

Sökning: WFRF:(Van Damme C. Corral) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maxted, P. F. L., et al. (författare)
  • Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using pycheops
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:1, s. 77-104
  • Tidskriftsartikel (refereegranskat)abstract
    • CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that transit nearby stars using ultrahigh precision photometry. Here, we report the analysis of transits observed by CHEOPS during its Early Science observing programme for four well-known exoplanets: GJ 436 b, HD 106315 b, HD 97658 b, and GJ 1132 b. The analysis is done using pycheops, an open-source software package we have developed to easily and efficiently analyse CHEOPS light-curve data using state-of-the-art techniques that are fully described herein. We show that the precision of the transit parameters measured using CHEOPS is comparable to that from larger space telescopes such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis to derive new constraints on the internal structure of these four exoplanets.
  •  
2.
  • Brandeker, Alexis, et al. (författare)
  • CHEOPS geometric albedo of the hot Jupiter HD 209458 b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of the secondary eclipse of the hot Jupiter HD 209458 b in optical/visible light using the CHEOPS space telescope. Our measurement of 20.4+3.2-3.3 parts per million translates into a geometric albedo of Ag = 0.096 ± 0.016. The previously estimated dayside temperature of about 1500 K implies that our geometric albedo measurement consists predominantly of reflected starlight and is largely uncontaminated by thermal emission. This makes the present result one of the most robust measurements of Ag for any exoplanet. Our calculations of the bandpass-integrated geometric albedo demonstrate that the measured value of Ag is consistent with a cloud-free atmosphere, where starlight is reflected via Rayleigh scattering by hydrogen molecules, and the water and sodium abundances are consistent with stellar metallicity. We predict that the bandpass-integrated TESS geometric albedo is too faint to detect and that a phase curve of HD 209458 b observed by CHEOPS would have a distinct shape associated with Rayleigh scattering if the atmosphere is indeed cloud free.
  •  
3.
  • Deline, A., et al. (författare)
  • The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These 'ultra-hot Jupiters' have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet's atmospheric properties. Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere. Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics. Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, R-p = 1.600(-0.016)(+0.017)R(J), with a precision of 1%, and the true orbital obliquity of the planetary system, Psi(P) = 89.6 +/- 1.2 deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of delta ecl = 96.5(-5.9)(+4).(5) ppm, from which we derive an upper limit on the geometric albedo: A(g) < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to similar to 165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J(2) (oblateness).
  •  
4.
  • Parviainen, H., et al. (författare)
  • CHEOPS finds KELT-1b darker than expected in visible light: Discrepancy between the CHEOPS and TESS eclipse depths
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies based on photometry from the Transiting Exoplanet Survey Satellite (TESS) have suggested that the dayside of KELT-1b, a strongly irradiated brown dwarf, is significantly brighter in visible light than what would be expected based on Spitzer observations in the infrared. We observed eight eclipses of KELT-1b with CHaracterising ExOPlanet Satellite (CHEOPS) to measure its dayside brightness temperature in the bluest passband observed so far, and we jointly modelled the CHEOPS photometry with the existing optical and near-infrared photometry from TESS, LBT, CFHT, and Spitzer. Our modelling has led to a self-consistent dayside spectrum for KELT-1b covering the CHEOPS, TESS, H, Ks, and Spitzer IRAC 3.6 and 4.5 μm bands, where our TESS, H, Ks, and Spitzer band estimates largely agree with the previous studies. However, we discovered a strong discrepancy between the CHEOPS and TESS bands. The CHEOPS observations yield a higher photometric precision than the TESS observations, but they do not show a significant eclipse signal, while a deep eclipse is detected in the TESS band. The derived TESS geometric albedo of 0.36-0.13+0.12 is difficult to reconcile with a CHEOPS geometric albedo that is consistent with zero because the two passbands have considerable overlap. Variability in cloud cover caused by the transport of transient nightside clouds to the dayside could provide an explanation for reconciling the TESS and CHEOPS geometric albedos, but this hypothesis needs to be tested by future observations.
  •  
5.
  • Maxted, P. F. L., et al. (författare)
  • Fundamental effective temperature measurements for eclipsing binary stars - III. SPIRou near-infrared spectroscopy and CHEOPS photometry of the benchmark G0V star EBLM J0113+31
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 6042-6057
  • Tidskriftsartikel (refereegranskat)abstract
    • EBLM J0113+31 is a moderately bright (V = 10.1), metal-poor ([Fe/H] approximate to-0.3) GOV star with a much fainter M dwarf companion on a wide, eccentric orbit (= 14.3 d). We have used near-infrared spectroscopy obtained with the SPIRou spectrograph to measure the semi-amplitude of the M dwarf's spectroscopic orbit, and high-precision photometry of the eclipse and transit from the CHEOPS and TESS space missions to measure the geometry of this binary system. From the combined analysis of these data together with previously published observations, we obtain the following model-independent masses and radii: M-1 = 1.029 +/- 0.025 M-circle dot, M-2 = 0.197 +/- 0.003 M-circle dot, R-1 = 1.417 +/- 0.014 R-circle dot, R-2 = 0.215 +/- 0.002 R-circle dot. Using R-1 and the parallax from Gaia EDR3 we find that this star's angular diameter is theta = 0.0745 +/- 0.0007 mas. The apparent bolometric flux of the GOV star corrected for both extinction and the contribution from the M dwarf (<0.2 per cent) is F-circle plus,F-0 = (2.62 +/- 0.05) x 10(-9) erg cm(-2) S-1. Hence, this G0V star has an effective temperature T-eff(,1) = 6124 K +/- 40 K (rnd.) +/- 10 K (sys.). EBLM J0113+31 is an ideal benchmark star that can be used for 'end-to-end' tests of the stellar parameters measured by large-scale spectroscopic surveys, or stellar parameters derived from asteroseismology with PLATO. The techniques developed here can be applied to many other eclipsing binaries in order to create a network of such benchmark stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy