SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van Oers Kees) srt2:(2020-2023)"

Sökning: WFRF:(Van Oers Kees) > (2020-2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bailey, Liam D., et al. (författare)
  • Bird populations most exposed to climate change are less sensitive to climatic variation
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.
  •  
2.
  • Culina, Antica, et al. (författare)
  • Connecting the data landscape of long-term ecological studies : The SPI-Birds data hub
  • 2021
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 90:9, s. 2147-2160
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database ()-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.
  •  
3.
  • Höglund, Andrey, 1985- (författare)
  • Quantitative genetics of gene expression and methylation in the chicken
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In quantitative genetics the relationship between genetic and phenotypic variation is investigated. The identification of these variants can bring improvements to selective breeding, allow for transgenic techniques to be applied in agricultural settings and assess the risk of polygenic diseases. To locate these variants, a linkage-­‐based quantitative trait locus (QTL) approach can be applied. In this thesis, a chicken intercross population between wild and domestic birds have been used for QTL mapping of phenotypes such as comb, body and brain size, bone density and anxiety behaviour. Gene expression QTL (eQTL) mapping was also done for tissues such as comb base, medullar bone, liver and brain. By overlapping eQTL and QTL, regions were identified associated with both the gene expression levels and the phenotypes simultaneously. In this way, a number of candidate genes, underlying variation in the above-­‐mentioned phenotypes, were identified. Additionally, DNA methylation QTL (mQTL) mapping was done in the brain and the methylation landscape was assessed which indicated a decrease in methylation in the domestic breed. A small number of regions were identified which affected DNA methylation levels throughout the whole genome, so-­‐called trans hotspots. Finally, DNA methylation levels were correlated with eQTL to assess the degree to which gene expression is affected by methylation, and with gene expression in general to assess the relationship between the transcriptome and methylome. Taken together, these studies link the differences observed in various phenotypes between two populations of chicken to genetic variants coupled with gene expression correlations suggesting candidate genes. DNA methylation levels were influential in regulating variation in gene expression, both positively and negatively, but gene expression was also influential in regulating the methylation level. Epi-­‐alleles were identified which indicated genetic variants regulating methylation levels and gene expression levels either as the causal variant or in close linkage.
  •  
4.
  • Lindner, Melanie, et al. (författare)
  • Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird
  • 2021
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 30:15, s. 3645-3659
  • Tidskriftsartikel (refereegranskat)abstract
    • Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.
  •  
5.
  • Lindner, Melanie, et al. (författare)
  • Temporal changes in DNA methylation and RNA expression in a small song bird : within- and between-tissue comparisons
  • 2021
  • Ingår i: BMC Genomics. - : BioMed Central (BMC). - 1471-2164. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n=6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled.Results: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10kb up- and downstream regions adjacent to the gene body.Conclusion: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.
  •  
6.
  • Urhan, Utku, et al. (författare)
  • Blue tits are outperformed by great tits in a test of motor inhibition, and experience does not improve their performance
  • 2023
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Motor inhibition refers to the ability to inhibit immediate responses in favour of adaptive actions that are mediated by executive functions. This ability may be an indication of general cognitive ability in animals and is important for advanced cognitive functions. In this study, our aim was to compare motor inhibition ability of two closely related passerines that share the same habitat. To do this, we tested motor inhibition ability using a transparent cylinder task in blue tits in the same way as we previously tested great tits. To test whether the experience of transparent objects would affect the performance of these species differently, both in the present experiment using blue tits and our previous one on great tits, we divided 33 wild-caught individuals into three different treatment groups with 11 birds each. Before the test we allowed one group to experience a transparent cylindrical object, one group to experience a transparent wall and a third group was kept naive. In general, blue tits performed worse than great tits, and unlike the great tits, they did not improve their performance after experience with a transparent cylinder-like object. The performance difference may stem from difference in foraging behaviour between these species.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy