SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van der Linden D) srt2:(2020-2024)"

Sökning: WFRF:(Van der Linden D) > (2020-2024)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Jones, Benedict C, et al. (författare)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • Ingår i: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Belov, Vladimir, et al. (författare)
  • Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
  • 2024
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
  •  
8.
  • Sønderby, Ida E., et al. (författare)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • Ingår i: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
9.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
10.
  • van Rhee, Koen P., et al. (författare)
  • Pooled Population Pharmacokinetic Analysis and Dose Recommendations for Ciprofloxacin in Intensive Care Unit Patients with Obesity
  • 2024
  • Ingår i: Journal of Clinical Pharmacology. - 0091-2700.
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have explored the influence of obesity and critical illness on ciprofloxacin pharmacokinetics. However, variation across the subpopulation of individuals with obesity admitted to the intensive care unit (ICU) with varying renal function remains unexamined. This study aims to characterize ciprofloxacin pharmacokinetics in ICU patients with obesity and provide dose recommendations for this special population. Individual patient data of 34 ICU patients with obesity (BMI >30 kg/m2) from four studies evaluating ciprofloxacin pharmacokinetics in ICU patients were pooled and combined with data from a study involving 10 individuals with obesity undergoing bariatric surgery. All samples were collected after intravenous administration. Non-linear mixed effects modeling and simulation were used to develop a population pharmacokinetic model and describe ciprofloxacin exposure in plasma. Model-based dose evaluations were performed using a pharmacokinetic/pharmacodynamic target of AUC/MIC >125. The data from patients with BMI ranging from 30.2 to 58.1 were best described by a two-compartment model with first-order elimination and a proportional error model. The inclusion of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) as a covariate on clearance reduced inter-individual variability from 57.3% to 38.5% (P <.001). Neither body weight nor ICU admission significantly influenced clearance or volume of distribution. Renal function is a viable predictor for ciprofloxacin clearance in ICU patients with obesity, while critical illness and body weight do not significantly alter clearance. As such, body weight and critical illness do not need to be accounted for when dosing ciprofloxacin in ICU patients with obesity. Individuals with CKD-EPI >60 mL/min/1.73 m2 may require higher dosages for the treatment of pathogens with minimal inhibitory concentration ≥0.25 mg/L.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (22)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Aalto, Susanne, 1964 (7)
Privon, G. (7)
Song, Y. (7)
Charmandaris, V. (7)
Armus, Lee (7)
Lai, Thomas (7)
visa fler...
Vivian, U. (7)
Larson, K. (7)
Diaz-Santos, T. (7)
Evans, Aaron S. (7)
Malkan, M. A. (7)
van der Werf, P. (5)
Muller-Sanchez, Fran ... (4)
Ching, Christopher R ... (3)
Thompson, Paul M (3)
Law, David R. (3)
van der Linden, J (3)
Saito, T (2)
Agartz, Ingrid (2)
Brouwer, Rachel M (2)
Westlye, Lars T (2)
Andreassen, Ole A (2)
Sanders, David (2)
Andersson, Micael (2)
De Hert, S (2)
Ouattara, A (2)
Stefansson, Kari (2)
Johansson, Stefan (2)
de Geus, Eco J. C. (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Haavik, Jan (2)
Kaufmann, Tobias (2)
van der Meer, Dennis (2)
Moberget, Torgeir (2)
Djurovic, Srdjan (2)
Jakobsson, J. (2)
Thalamuthu, Anbupala ... (2)
Cichon, Sven (2)
Hashimoto, Ryota (2)
Hoffmann, Per (2)
Schofield, Peter R (2)
Cao, B. (2)
Jacquemont, Sebastie ... (2)
Nyberg, Lars, 1966- (2)
Fladby, Tormod (2)
Jönsson, Erik G. (2)
Le Hellard, Stephani ... (2)
Murray, Robin M. (2)
Rich, Jeffrey A. (2)
visa färre...
Lärosäte
Karolinska Institutet (9)
Chalmers tekniska högskola (7)
Umeå universitet (3)
Uppsala universitet (3)
Stockholms universitet (3)
Linköpings universitet (3)
visa fler...
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Högskolan Väst (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (8)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy