SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vasan Ramachandran S) srt2:(2020-2023)"

Sökning: WFRF:(Vasan Ramachandran S) > (2020-2023)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lind, Lars, et al. (författare)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • Ingår i: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
2.
  • Mishra, A, et al. (författare)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
3.
  •  
4.
  •  
5.
  • Taddei, C, et al. (författare)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
6.
  •  
7.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
8.
  • Chen, Hao Yu, et al. (författare)
  • Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis
  • 2020
  • Ingår i: JAMA cardiology. - : American Medical Association (AMA). - 2380-6583 .- 2380-6591. ; 5:6, s. 694-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets.Objective: To identify novel genetic loci and pathways associated with AS.Design, Setting, and Participants: This genome-wide association study used a case-control design to evaluate 44 703 participants (3469 cases of AS) of self-reported European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (from January 1, 1996, to December 31, 2015). Replication was performed in 7 other cohorts totaling 256 926 participants (5926 cases of AS), with additional analyses performed in 6942 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Follow-up biomarker analyses with aortic valve calcium (AVC) were also performed. Data were analyzed from May 1, 2017, to December 5, 2019.Exposures: Genetic variants (615 643 variants) and polyunsaturated fatty acids (ω-6 and ω-3) measured in blood samples.Main Outcomes and Measures: Aortic stenosis and aortic valve replacement defined by electronic health records, surgical records, or echocardiography and the presence of AVC measured by computed tomography.Results: The mean (SD) age of the 44 703 GERA participants was 69.7 (8.4) years, and 22 019 (49.3%) were men. The rs174547 variant at the FADS1/2 locus was associated with AS (odds ratio [OR] per C allele, 0.88; 95% CI, 0.83-0.93; P = 3.0 × 10-6), with genome-wide significance after meta-analysis with 7 replication cohorts totaling 312 118 individuals (9395 cases of AS) (OR, 0.91; 95% CI, 0.88-0.94; P = 2.5 × 10-8). A consistent association with AVC was also observed (OR, 0.91; 95% CI, 0.83-0.99; P = .03). A higher ratio of arachidonic acid to linoleic acid was associated with AVC (OR per SD of the natural logarithm, 1.19; 95% CI, 1.09-1.30; P = 6.6 × 10-5). In mendelian randomization, increased FADS1 liver expression and arachidonic acid were associated with AS (OR per unit of normalized expression, 1.31 [95% CI, 1.17-1.48; P = 7.4 × 10-6]; OR per 5-percentage point increase in arachidonic acid for AVC, 1.23 [95% CI, 1.01-1.49; P = .04]; OR per 5-percentage point increase in arachidonic acid for AS, 1.08 [95% CI, 1.04-1.13; P = 4.1 × 10-4]).Conclusions and Relevance: Variation at the FADS1/2 locus was associated with AS and AVC. Findings from biomarker measurements and mendelian randomization appear to link ω-6 fatty acid biosynthesis to AS, which may represent a therapeutic target.
  •  
9.
  • Weinstock, Joshua S, et al. (författare)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • Ingår i: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
10.
  • Lai, Heidi T. M., et al. (författare)
  • Trans Fatty Acid Biomarkers and Incident Type 2 Diabetes : Pooled Analysis of 12 Prospective Cohort Studies in the Fatty Acids and Outcomes Research Consortium (FORCE)
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 45:4, s. 854-863
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Trans fatty acids (TFAs) have harmful biologic effects that could increase the risk of type 2 diabetes (T2D), but evidence remains uncertain. We aimed to investigate the prospective associations of TFA biomarkers and T2D by conducting an individual participant-level pooled analysis.RESEARCH DESIGN AND METHODS: We included data from an international consortium of 12 prospective cohorts and nested case-control studies from six nations. TFA biomarkers were measured in blood collected between 1990 and 2008 from 25,126 participants aged >= 18 years without prevalent diabetes. Each cohort conducted de novo harmonized analyses using a prespecified protocol, and findings were pooled using inverse-variance weighted meta-analysis. Heterogeneity was explored by prespecified between-study and within-study characteristics.RESULTS: During a mean follow-up of 13.5 years, 2,843 cases of incident T2D were identified. In multivariable-adjusted pooled analyses, no significant associations with T2D were identified for trans/trans-18:2, relative risk (RR) 1.09 (95% CI 0.94-1.25); cis/trans-18:2, 0.89 (0.73-1.07); and trans/cis-18:2, 0.87 (0.73-1.03). Trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated with T2D (RR 0.81 [95% CI 0.67-0.99], 0.86 [0.75-0.99], and 0.84 [0.74-0.96], respectively). Findings were not significantly different according to prespecified sources of potential heterogeneity (each P >= 0.1).CONCLUSIONS: Circulating individual trans-18:2 TFA biomarkers were not associated with risk of T2D, while trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated. Findings may reflect the influence of mixed TFA sources (industrial vs. natural ruminant), a general decline in TFA exposure due to policy changes during this period, or the relatively limited range of TFA levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy