SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verstraete M. J.) srt2:(2020-2024)"

Sökning: WFRF:(Verstraete M. J.) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chown, Ryan, et al. (författare)
  • PDRs4All: IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs. Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here. Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy. Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.
  •  
2.
  • De Putte, Dries Van, et al. (författare)
  • PDRs4All VIII. Mid-infrared emission line inventory of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • Context . Mid-infrared emission features are important probes of the properties of ionized gas and hot or warm molecular gas, which are difficult to probe at other wavelengths. The Orion Bar photodissociation region (PDR) is a bright, nearby, and frequently studied target containing large amounts of gas under these conditions. Under the “PDRs4All” Early Release Science Program for JWST, a part of the Orion Bar was observed with MIRI integral field unit (IFU) spectroscopy, and these high-sensitivity IR spectroscopic images of very high angular resolution (0.2′′) provide a rich observational inventory of the mid-infrared (MIR) emission lines, while resolving the H II region, the ionization front, and multiple dissociation fronts. Aims . We list, identify, and measure the most prominent gas emission lines in the Orion Bar using the new MIRI IFU data. An initial analysis summarizes the physical conditions of the gas and demonstrates the potential of these new data and future IFU observations with JWST. Methods. The MIRI IFU mosaic spatially resolves the substructure of the PDR, its footprint cutting perpendicularly across the ionization front and three dissociation fronts. We performed an up-to-date data reduction, and extracted five spectra that represent the ionized, atomic, and molecular gas layers. We identified the observed lines through a comparison with theoretical line lists derived from atomic data and simulated PDR models. The identified species and transitions are summarized in the main table of this work, with measurements of the line intensities and central wavelengths. Results . We identified around 100 lines and report an additional 18 lines that remain unidentified. The majority consists of H I recombination lines arising from the ionized gas layer bordering the PDR. The H I line ratios are well matched by emissivity coefficients from H recombination theory, but deviate by up to 10% because of contamination by He I lines. We report the observed emission lines of various ionization stages of Ne, P, S, Cl, Ar, Fe, and Ni. We show how the Ne III/Ne II, S IV/S III, and Ar III/Ar II ratios trace the conditions in the ionized layer bordering the PDR, while Fe III/Fe II and Ni III/Ni II exhibit a different behavior, as there are significant contributions to Fe II and Ni II from the neutral PDR gas. We observe the pure-rotational H2 lines in the vibrational ground state from 0–0 S(1) to 0–0 S(8), and in the first vibrationally excited state from 1–1 S(5) to 1–1 S(9). We derive H2 excitation diagrams, and for the three observed dissociation fronts, the rotational excitation can be approximated with one thermal (∼700 K) component representative of an average gas temperature, and one nonthermal component (∼2700 K) probing the effect of UV pumping. We compare these results to an existing model of the Orion Bar PDR, and find that the predicted excitation matches the data qualitatively, while adjustments to the parameters of the PDR model are required to reproduce the intensity of the 0–0 S(6) to S(8) lines.
  •  
3.
  • Habart, Emilie, et al. (författare)
  • PDRs4All II. JWST’s NIR and MIR imaging view of the Orion Nebula
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over ∼150′′ and 42′′ in key gas phase lines (e.g., Pa α, Br α, [FeII] 1.64 µm, H2 1–0 S(1) 2.12 µm, 0–0 S(9) 4.69 µm), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3–3.4 µm, 7.7, and 11.3 µm), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of ∼0.1–1′′ (∼0.0002–0.002 pc or ∼40–400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H0/H2 DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D “terraced” geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
  •  
4.
  • Peeters, Els, et al. (författare)
  • PDRs4All: III. JWST's NIR spectroscopic view of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. JWST has taken the sharpest and most sensitive infrared (IR) spectral imaging observations ever of the Orion Bar photodis-sociation region (PDR), which is part of the nearest massive star-forming region the Orion Nebula, and often considered to be the 'prototypical'strongly illuminated PDR. Aims. We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the H II region to the atomic PDR -crossing the ionisation front (IF) -, and the subsequent transition to the molecular PDR -crossing the dissociation front (DF). Given the prevalence of PDRs in the interstellar medium and their dominant contribution to IR radiation, understanding the response of the PDR gas to far-ultraviolet (FUV) photons and the associated physical and chemical processes is fundamental to our understanding of star and planet formation and for the interpretation of any unresolved PDR as seen by JWST. Methods. We used high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science programme. We constructed a 3″ × 25″ spatio-spectral mosaic covering 0.97-5.27 μm at a spectral resolution R of ~2700 and an angular resolution of 0.075″-0.173″. To study the properties of key regions captured in this mosaic, we extracted five template spectra in apertures centred on the three H2 dissociation fronts, the atomic PDR, and the H II region. This wealth of detailed spatial-spectral information was analysed in terms of variations in the physical conditions-incident UV field, density, and temperature -of the PDR gas. Results. The NIRSpec data reveal a forest of lines including, but not limited to, He I, H I, and C I recombination lines; ionic lines (e.g. Fe III and Fe II); O I and N I fluorescence lines; aromatic infrared bands (AIBs, including aromatic CH, aliphatic CH, and their CD counterparts); pure rotational and ro-vibrational lines from H2; and ro-vibrational lines from HD, CO, and CH+, with most of them having been detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. In addition, we observed numerous smaller-scale structures whose typical size decreases with distance from θ1 Ori C and IR lines from C I, if solely arising from radiative recombination and cascade, reveal very high gas temperatures (a few 1000 K) consistent with the hot irradiated surface of small-scale dense clumps inside the PDR. The morphology of the Bar, in particular that of the H2 lines, reveals multiple prominent filaments that exhibit different characteristics. This leaves the impression of a 'terraced'transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. We attribute the different characteristics of the H2 filaments to their varying depth into the PDR and, in some cases, not reaching the C+/C/CO transition. These observations thus reveal what local conditions are required to drive the physical and chemical processes needed to explain the different characteristics of the DFs and the photochemical evolution of the AIB carriers. Conclusions. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star and planet formation as well as galaxy evolution.
  •  
5.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
6.
  • Elyajouri, Meriem, et al. (författare)
  • PDRs4All V. Modelling the dust evolution across the illuminated edge of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Interstellar dust particles, in particular carbonaceous nano-grains (like polycyclic aromatic hydrocarbons, fullerenes, and amorphous hydrogenated carbon), are critical players for the composition, energy budget, and dynamics of the interstellar medium (ISM). The dust properties, specifically the composition and size of dust grains are not static; instead, they exhibit considerable evolution triggered by variations in local physical conditions such as the density and gas temperature within the ISM, as is the case in photon-dominated regions (PDRs). The evolution of dust and its impact on the local physical and chemical conditions is thus a key question for understanding the first stages of star formation. Aims. From the extensive spectral and imaging data of the JWST PDRs4All program, we study the emission of dust grains within the Orion Bar – a well-known, highly far-UV (FUV)-irradiated PDR situated at the intersection between cold, dense molecular clouds, and warm ionized regions. The Orion Bar because of its edge-on geometry provides an exceptional benchmark for characterizing dust evolution and the associated driving processes under varying physical conditions. Our goal is to constrain the local properties of dust by comparing its emission to models. Taking advantage of the recent JWST data, in particular the spectroscopy of dust emission, we identify new constraints on dust and further previous works of dust modelling. Methods. To characterize interstellar dust across the Orion Bar, we follow its emission as traced by JWST NIRCam (at 3.35 and 4.8 µm) and MIRI (at 7.7, 11.3, 15.0, and 25.5 µm) broad band images, along with NIRSpec and MRS spectroscopic observations. First, we constrain the minimum size and hydrogen content of carbon nano-grains from a comparison between the observed dust emission spectra and the predictions of the Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS) coupled to the numerical code DustEM. Using this dust model, we then perform 3D radiative transfer simulations of dust emission with the SOC code (Scattering with OpenCL) and compare to data obtained along well chosen profiles across the Orion Bar. Results. The JWST data allows us, for the first time, to spatially resolve the steep variation of dust emission at the illuminated edge of the Orion Bar PDR. By considering a dust model with carbonaceous nano-grains and submicronic coated silicate grains, we derive unprecedented constraints on the properties of across the Orion Bar. To explain the observed emission profiles with our simulations, we find that the nano-grains must be strongly depleted with an abundance (relative to the gas) 15 times less than in the diffuse ISM. The NIRSpec and MRS spectroscopic observations reveal variations in the hydrogenation of the carbon nano-grains. The lowest hydrogenation levels are found in the vicinity of the illuminating stars suggesting photo-processing while more hydrogenated nano-grains are found in the cold and dense molecular region, potentially indicative of larger grains.
  •  
7.
  • Timmis, Kenneth, et al. (författare)
  • A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society
  • 2024
  • Ingår i: Microbial Biotechnology. - 1751-7907. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient.ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy