SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vesala Timo) srt2:(2006-2009)"

Sökning: WFRF:(Vesala Timo) > (2006-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kulmala, Liisa, et al. (författare)
  • H2O and CO2 fluxes at the floor of a boreal pine forest
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:2, s. 167-178
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0 mmol m(-2) s(-1) while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2 mu mol m(-2) s(-1)) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7 mu mol m(-2) s(-1) and with EC from similar to 4 to similar to 5 mu mol m(-2) s(-1) when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (P-max) to range from 0.008 (mosses) to 0.184 mu mol g(-1) s(-1) (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3 mu mol m(-2) s(-1). At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7 mu mol m(-2) s(-1).
  •  
3.
  • Makela, Annikki, et al. (författare)
  • Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe
  • 2008
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 14:1, s. 92-108
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper develops a statistical model for daily gross primary production (GPP) in boreal and temperate coniferous forests. The model applies the light use efficiency (LUE) approach, which estimates the conversion efficiency of daily absorbed photosynthetically active radiation (APAR) into daily GPP as a product of potential LUE and modifying factors. The latter were derived from daily total APAR and daily mean temperature, vapour pressure deficit (VPD) and soil water content (SWC). Modelling data came from five European eddy covariance measurement towers over 2-8 years. The model was tested against independent data from two AmeriFlux stations. The model with the APAR, temperature and VPD modifiers worked well in almost all the site-year combinations, but the SWC modifier only improved the fit in few cases. Geographical variation was found in the modifiers and potential LUE in site-specific models. When a model was fitted to pooled data, differences between sites could be explained by potential LUE, leaf area and environmental conditions. The test against the AmeriFlux data corroborated this finding. The potential LUE varied from 1.9 to 3.1 g C MJ(-1), and a weak correlation was found between foliar nitrogen concentration and potential LUE. Some year-to-year variation remained which could be captured by neither the pooled nor the site-specific models.
  •  
4.
  • Piao, Shilong, et al. (författare)
  • Net carbon dioxide losses of northern ecosystems in response to autumn warming
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 451:7174, s. 3-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring(1-4), with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades(5). A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity(6,7). These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future(8). Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn- to- winter carbon dioxide build- up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process- based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C-1, offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested(9,10).
  •  
5.
  • Rutter, Nick, et al. (författare)
  • Evaluation of forest snow processes models (SnowMIP2)
  • 2009
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 114:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above-freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal "best'' model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites shows that there is less consistency at forest sites than open sites, and even less consistency between forest and open sites in the same year. A good performance by a model at a forest site is therefore unlikely to mean a good model performance by the same model at an open site (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy