SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vestin P.) srt2:(2005-2009)"

Search: WFRF:(Vestin P.) > (2005-2009)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mircea, M, et al. (author)
  • Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin
  • 2005
  • In: Atmospheric Chemistry and Physics. - 1680-7324. ; 5, s. 3111-3126
  • Journal article (peer-reviewed)abstract
    • The aerosol in the Amazon basin is dominated throughout the year by organic matter, for the most part soluble in water. In this modeling study, we show how the knowledge of water-soluble organic compounds (WSOC) and the associated physical and chemical properties (e.g. solubility, surface tension, dissociation into ions) affect the hygroscopic growth and activation of the aerosol in this area. The study is based on data obtained during the SMOCC field experiment carried out in Rondonia, Brazil, over a period encompassing the dry (biomass burning) season to the onset of the wet season (September to mid-November, 2002). The comparison of predicted and measured cloud condensation nuclei (CCN) number concentration shows that the knowledge of aerosol WSOC composition in terms of classes of compounds and of their relative molecular weights and acidic properties may be sufficient to predict aerosol activation, without any information on solubility. Conversely, the lack of knowledge on WSOC solubility leads to a high overestimation of the observed diameter growth factors (DGF) by the theory. Moreover, the aerosol water soluble inorganic species fail to predict both DGFs and CCN number concentration. In fact, this study shows that a good reproduction of the measured DGF and CCN concentration is obtained if the chemical composition of aerosol, especially that of WSOC, is appropriately taken into account in the calculations. New parameterizations for the computed CCN spectra are also derived which take into account the variability caused by chemical effects (surface tension, molecular composition, solubility, degree of dissociation of WSOC).
  •  
2.
  • Rissler, Jenny, et al. (author)
  • Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
  • 2006
  • In: Atmospheric Chemistry and Physics. - 1680-7324. ; 6:2, s. 471-491
  • Journal article (peer-reviewed)abstract
    • Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia). The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate), and cover the later part of the dry season (with heavy biomass burning), a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850 nm) and an APS (Aerodynamic Particle Sizer), extending the distributions up to 3.3 mu m in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) measured the hygroscopic diameter growth factors (Gf) at 90% relative humidity (RH), for particles with dry diameters (d(p)) between 20-440 nm, and at several occasions RH scans (30-90% RH) were performed for 165 nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD) of similar to 12 nm, an Aitken mode (GMD=61-92 nm) and an accumulation mode (GMD=128-190 nm). The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf similar to 1.09 for 100 nm particles) and moderately hygroscopic (Gf similar to 1.26). While the hygroscopic growth factors were surprisingly similar over the periods, the number fraction of particles belonging to each hygroscopic group varied more, with the dry period aerosol being more dominated by nearly hydrophobic particles. As a result the total particle water uptake rose going into the cleaner period. The fraction of moderately hygroscopic particles was consistently larger for particles in the accumulation mode compared to the Aitken mode for all periods. Scanning the H-TDMA over RH (30-90% RH) showed no deliquescence behavior. A parameterization of both Gf(RH) and Gf(d(p)), is given.
  •  
3.
  • Vestin, A, et al. (author)
  • Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling
  • 2007
  • In: Journal of Geophysical Research. - 2156-2202. ; 112:D14
  • Journal article (peer-reviewed)abstract
    • The cloud-nucleating properties of the atmospheric aerosol were studied in an area under strong influence of vegetation burning. The measurements were part of Large-Scale Biosphere Atmosphere Experiment in Amazonia-Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) and were carried out at a ground site located in the state of Rondonia in southwestern Amazonia, Brazil, September to November 2002, covering the dry season, a transition period, and the onset of the wet season. The concentrations of cloud condensation nuclei (CCN) were measured with a static thermal gradient CCN counter for supersaturations ranging between 0.23 and 1.12%. As a closure test, the CCN concentrations were predicted with a time resolution of 10 min from measurements of the dry particle number size distribution (3-850 nm, Differential Mobility Analyzer (DMPS)) and hygroscopic growth at 90% relative humidity (Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA)). No chemical information was needed. The predicted and measured CCN concentrations were highly correlated (r(2)=0.97-0.99), and the predictions were only slightly lower than those measured, typically by 15-20%. Parameterizations of the predicted CCN concentrations are given for each of the three meteorological periods. These are based on averages taken during the afternoon hours when the measurements at ground level were representative for the aerosol entering the base of convective clouds. Furthermore, a more detailed parameterization including the mixing state of the aerosol is given, where the hygroscopic properties are expressed as the number of soluble ions or nondissociating molecules per unit volume dry particle.
  •  
4.
  • Vestin, Jenny, et al. (author)
  • The influence of alkaline and non-alkaline parent material on soil chemistry
  • 2006
  • In: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 135, s. 97-106
  • Journal article (peer-reviewed)abstract
    • The gneiss bedrock at Alnö Island, (62o24N, 17o30E) in the middle of Sweden, has alkaline intrusions interspersed in narrow dikes. This gives an opportunity to study the impact of different parent material on soil solution in a homogeneous spruce stand. In this study, the alkaline parent materials gave rise to a soil solution with significantly (p 0.05) higher concentrations of DOC, SO4, NO3, Ca and Mg compared to the non-alkaline sites. For the deepest mineral horizons, 25-30cm, F and pH were also higher in the alkaline soil solutions. There were almost no differences between the organic horizons at alkaline and non-alkaline sites, probably explained by the influence of litter and recirculation of nutrients. The multivariate analyses emphasized the correlation between the parent material and the soil solution concentrations of Ca, Mg, PO4 and Al. The data were statistically evaluated by t-tests, ANOVA (Analysis of variances), PCA (Principal Component Analysis) and PLS (Partial Least Squares regression).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view