SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Videvall Elin) srt2:(2020-2024)"

Sökning: WFRF:(Videvall Elin) > (2020-2024)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Francisco C., et al. (författare)
  • Transcriptional response of individual Hawaiian Culex quinquefasciatus mosquitoes to the avian malaria parasite Plasmodium relictum
  • 2022
  • Ingår i: Malaria Journal. - : Springer Nature. - 1475-2875. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plasmodium parasites that cause bird malaria occur in all continents except Antarctica and are primarily transmitted by mosquitoes in the genus Culex. Culex quinquefasciatus, the mosquito vector of avian malaria in HawaiModified Letter Turned Commai, became established in the islands in the 1820s. While the deadly effects of malaria on endemic bird species have been documented for many decades, vector-parasite interactions in avian malaria systems are relatively understudied.Methods: To evaluate the gene expression response of mosquitoes exposed to a Plasmodium infection intensity known to occur naturally in HawaiModified Letter Turned Commai, offspring of wild-collected Hawaiian Cx. quinquefasciatus were fed on a domestic canary infected with a fresh isolate of Plasmodium relictum GRW4 from a wild-caught Hawaiian honeycreeper. Control mosquitoes were fed on an uninfected canary. Transcriptomes of five infected and three uninfected individual mosquitoes were sequenced at each of three stages of the parasite life cycle: 24 h post feeding (hpf) during ookinete invasion; 5 days post feeding (dpf) when oocysts are developing; 10 dpf when sporozoites are released and invade the salivary glands.Results: Differential gene expression analyses showed that during ookinete invasion (24 hpf), genes related to oxidoreductase activity and galactose catabolism had lower expression levels in infected mosquitoes compared to controls. Oocyst development (5 dpf) was associated with reduced expression of a gene with a predicted innate immune function. At 10 dpf, infected mosquitoes had reduced expression levels of a serine protease inhibitor, and further studies should assess its role as a Plasmodium agonist in C. quinquefasciatus. Overall, the differential gene expression response of Hawaiian Culex exposed to a Plasmodium infection intensity known to occur naturally in HawaiModified Letter Turned Commai was low, but more pronounced during ookinete invasion.Conclusions: This is the first analysis of the transcriptional responses of vectors to malaria parasites in non-mammalian systems. Interestingly, few similarities were found between the response of Culex infected with a bird Plasmodium and those reported in Anopheles infected with human Plasmodium. The relatively small transcriptional changes observed in mosquito genes related to immune response and nutrient metabolism support conclusions of low fitness costs often documented in experimental challenges of Culex with avian Plasmodium.
  •  
2.
  • Fountain‐Jones, Nicholas M., et al. (författare)
  • Molecular ecology of microbiomes in the wild: Common pitfalls, methodological advances and future directions
  • 2024
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 33:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field.
  •  
3.
  • Leray, Matthieu, et al. (författare)
  • Natural experiments and long-term monitoring are critical to understand and predict marine host–microbe ecology and evolution
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 19:8, s. e3001322-e3001322
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Videvall, Elin, et al. (författare)
  • Coprophagy rapidly matures juvenile gut microbiota in a precocial bird
  • 2023
  • Ingår i: Evolution Letters. - : Oxford University Press. - 2056-3744. ; 7:4, s. 240-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Coprophagy is a behavior where animals consume feces, and has been observed across a wide range of species, including birds and mammals. The phenomenon is particularly prevalent in juveniles, but the reasons for this remain unclear. One hypothesis is that coprophagy enables offspring to acquire beneficial gut microbes that aid development. However, despite the potential importance of this behavior, studies investigating the effects in juveniles are rare. Here we experimentally test this idea by examining how ingestion of adult feces by ostrich chicks affects their gut microbiota development, growth, feeding behavior, pathogen abundance, and mortality. We conducted extensive longitudinal experiments for 8 weeks, repeated over 2 years. It involved 240 chicks, of which 128 were provided daily access to fresh fecal material from adults and 112 were simultaneously given a control treatment. Repeated measures, behavioral observations, and DNA metabarcoding of the microbial gut community, both prior to and over the course of the experiment, allowed us to evaluate multiple aspects of the behavior. The results show that coprophagy causes (a) marked shifts to the juvenile gut microbiota, including a major increase in diversity and rapid maturation of the microbial composition, (b) higher growth rates (fecal-supplemented chicks became 9.4% heavier at 8 weeks old), (c) changes to overall feeding behavior but no differences in feed intake, (d) lower abundance of a common gut pathogen (Clostridium colinum), and (e) lower mortality associated with gut disease. Together, our results suggest that the behavior of coprophagy in juveniles is highly beneficial and may have evolved to accelerate the development of gut microbiota.
  •  
8.
  • Videvall, Elin, et al. (författare)
  • Early-life gut dysbiosis linked to juvenile mortality in ostriches
  • 2020
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health. Methods: Here, we examine the changes that occur in the microbiome during dysbiosis in different parts of the gastrointestinal tract in a long-lived bird with high juvenile mortality, the ostrich (Struthio camelus). We evaluated the 16S rRNA gene composition of the ileum, cecum, and colon of 68 individuals that died of suspected enterocolitis during the first 3 months of life (diseased individuals), and of 50 healthy individuals that were euthanized as age-matched controls. We combined these data with longitudinal environmental and fecal sampling to identify potential sources of pathogenic bacteria and to unravel at which stage of development dysbiosis-associated bacteria emerge. Results: Diseased individuals had drastically lower microbial alpha diversity and differed substantially in their microbial beta diversity from control individuals in all three regions of the gastrointestinal tract. The clear relationship between low diversity and disease was consistent across all ages in the ileum, but decreased with age in the cecum and colon. Several taxa were associated with mortality (Enterobacteriaceae, Peptostreptococcaceae, Porphyromonadaceae, Clostridium), while others were associated with health (Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Turicibacter, Roseburia). Environmental samples showed no evidence of dysbiosis-associated bacteria being present in either the food, water, or soil substrate. Instead, the repeated fecal sampling showed that pathobionts were already present shortly after hatching and proliferated in individuals with low microbial diversity, resulting in high mortality several weeks later. Conclusions: Identifying the origins of pathobionts in neonates and the factors that subsequently influence the establishment of diverse gut microbiota may be key to understanding dysbiosis and host development. [MediaObject not available: See fulltext.]
  •  
9.
  • Videvall, Elin, et al. (författare)
  • Host transcriptional responses to high-and low-virulent avian malaria parasites
  • 2020
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 195:6, s. 1070-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional response of hosts to genetically similar pathogens can vary substantially, with important implications for disease severity and host fitness. A low pathogen load can theoretically elicit both high and low host responses, as the outcome depends on both the effectiveness of the host at suppressing the pathogen and the ability of the pathogen to evade the immune system. Here, we investigate the transcriptional response of Eurasian siskins (Spinus spinus) to two closely related lineages of the malaria parasite Plasmodium relictum. Birds were infected with either the high-virulent lineage P. relictum SGS1, the low-virulent sister lineage P. relictum GRW4, or sham-injected (controls). Blood samples for RNA sequencing were collected at four time points during the course of infection, totaling 76 transcriptomes from 19 birds. Hosts infected with SGS1 experienced up to 87% parasitemia and major transcriptome shifts throughout the infection, and multiple genes showed strong correlation with parasitemia. In contrast, GRW4-infected hosts displayed low parasitemia (maximum 0.7%) with a minor transcriptional response. We furthermore demonstrate that the baseline gene expression levels of hosts prior to infection were irrelevant as immunocompetence markers, as they could not predict future pathogen load. This study shows that the magnitude of the host transcriptional response can differ markedly from related parasites with different virulence, and it enables a better understanding of the molecular interactions taking place between hosts and parasites.
  •  
10.
  • Videvall, Elin, et al. (författare)
  • Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands
  • 2023
  • Ingår i: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 330
  • Tidskriftsartikel (refereegranskat)abstract
    • Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chor-nobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based ap-proaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy