SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ville D) srt2:(2020-2024)"

Sökning: WFRF:(Ville D) > (2020-2024)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vogelezang, Suzanne, et al. (författare)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
2.
  • Anctil, Annick, et al. (författare)
  • Status report on emerging photovoltaics
  • 2023
  • Ingår i: JOURNAL OF PHOTONICS FOR ENERGY. - : SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. - 1947-7988. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.(c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
  •  
3.
  •  
4.
  • Agirre, Jon, et al. (författare)
  • The CCP4 suite: integrative software for macromolecular crystallography
  • 2023
  • Ingår i: Acta Crystallographica Section D. - : INT UNION CRYSTALLOGRAPHY. - 2059-7983. ; 79, s. 449-461
  • Tidskriftsartikel (refereegranskat)abstract
    • The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
  •  
5.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
6.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
7.
  • Lebrette, Hugo, 1986-, et al. (författare)
  • Structure of a ribonucleotide reductase R2 protein radical
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 382:6666, s. 109-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.
  •  
8.
  • Pugin, D, et al. (författare)
  • Resting-State Brain Activity for Early Prediction Outcome in Postanoxic Patients in a Coma with Indeterminate Clinical Prognosis.
  • 2020
  • Ingår i: American Journal of Neuroradiology. - : American Society of Neuroradiology (ASNR). - 0195-6108 .- 1936-959X. ; 41:6, s. 1022-1030
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Early outcome prediction of postanoxic patients in a coma after cardiac arrest proves challenging. Current prognostication relies on multimodal testing, using clinical examination, electrophysiologic testing, biomarkers, and structural MR imaging. While this multimodal prognostication is accurate for predicting poor outcome (ie, death), it is not sensitive enough to identify good outcome (ie, consciousness recovery), thus leaving many patients with indeterminate prognosis. We specifically assessed whether resting-state fMRI provides prognostic information, notably in postanoxic patients in a coma with indeterminate prognosis early after cardiac arrest, specifically for good outcome.MATERIALS AND METHODS: We used resting-state fMRI in a prospective study to compare whole-brain functional connectivity between patients with good and poor outcomes, implementing support vector machine learning. Then, we automatically predicted coma outcome using resting-state fMRI and also compared the prediction based on resting-state fMRI with the outcome prediction based on DWI.RESULTS: Of 17 eligible patients who completed the study procedure (among 351 patients screened), 9 regained consciousness and 8 remained comatose. We found higher functional connectivity in patients recovering consciousness, with greater changes occurring within and between the occipitoparietal and temporofrontal regions. Coma outcome prognostication based on resting-state fMRI machine learning was very accurate, notably for identifying patients with good outcome (accuracy, 94.4%; area under the receiver operating curve, 0.94). Outcome predictors using resting-state fMRI performed significantly better (P < .05) than DWI (accuracy, 60.0%; area under the receiver operating curve, 0.63).CONCLUSIONS: Indeterminate prognosis might lead to major clinical uncertainty and significant variations in life-sustaining treatments. Resting-state fMRI might bridge the gap left in early prognostication of postanoxic patients in a coma by identifying those with both good and poor outcomes.
  •  
9.
  • Albers, Roland, et al. (författare)
  • Magnetospheric Venus Space Explorers (MVSE) mission : a proposal for understanding the dynamics of induced magnetospheres
  • 2024
  • Ingår i: Acta Astronautica. - : Elsevier. - 0094-5765 .- 1879-2030. ; 221, s. 194-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Induced magnetospheres form around planetary bodies with atmospheres through the interaction of the solar wind with their ionosphere. Induced magnetospheres are highly dependent on the solar wind conditions and have only been studied with single spacecraft missions in the past. Without simultaneous measurements of solar wind variations and phenomena in the magnetosphere, establishing a link between both can only be done indirectly, using statistics over a large set of measurements. This gap in knowledge could be addressed by a multi-spacecraft plasma mission, optimized for studying global spatial and temporal variations in the magnetospheric system around Venus, which hosts the most prominent example of an induced magnetosphere in our solar system. The MVSE mission comprises four satellites, of which three are identical scientific spacecraft, carrying the same suite of instruments probing different regions of the induced magnetosphere and the solar wind simultaneously. The fourth spacecraft is the transfer vehicle which acts as a relay satellite for communications at Venus. In this way, changes in the solar wind conditions and extreme solar events can be observed, and their effects can be quantified as they propagate through the Venusian induced magnetosphere. Additionally, energy transfer in the Venusian induced magnetosphere can be investigated. The scientific payload includes instrumentation to measure the magnetic field, electric field, and ion–electron velocity distributions. This study presents the scientific motivation for the mission as well as requirements and the resulting mission design. Concretely, a mission timeline along with a complete spacecraft design, including mass, power, communication, propulsion and thermal budgets are given. This mission was initially conceived at the Alpbach Summer School 2022 and refined during a week-long study at ESA's Concurrent Design Facility in Redu, Belgium.
  •  
10.
  • Bridges, Hannah R., et al. (författare)
  • Structure of inhibitor-bound mammalian complex I
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Ao resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I. The respiratory complex I (NADH:ubiquinone oxidoreductase) is a large redox-driven proton pump that initiates respiration in mitochondria. Here, the authors present the 3.0 angstrom cryo-EM structure of complex I from mouse heart mitochondria with the ubiquinone-analogue inhibitor piericidin A bound in the active site and with kinetic measurements and MD simulations they further show that this inhibitor acts competitively against the native ubiquinone-10 substrate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sauter, Nicholas K. (3)
Brewster, Aaron S. (3)
Kern, Jan (3)
Yachandra, Vittal K. (3)
Bhowmick, Asmit (3)
Fuller, Franklin D. (3)
visa fler...
Kim, In-Sik (3)
Batyuk, Alexander (3)
Gul, Sheraz (3)
Aller, Pierre (3)
Orville, Allen M (3)
Högbom, Martin (2)
Perfilyev, Alexander (2)
Ling, Charlotte (2)
Wallenius, Ville, 19 ... (2)
Pihlajamäki, Jussi (2)
Ryan, G. (2)
Pires, Vasco D.C. (2)
Lundén, Ville (2)
Schulz, Leonard (2)
Palanca, Ines Terraz ... (2)
Teubenbacher, Daniel (2)
Lennerstrand, Sofia (2)
Kaila, Ville R. I. (2)
Yano, Junko (2)
Tono, Kensuke (2)
Aurelius, Oskar (2)
Cheah, Mun Hon (2)
Srinivas, Vivek, 198 ... (2)
Lebrette, Hugo (2)
Khalil, A (2)
Tiblad, E (2)
Simon, Philipp S. (2)
Dasgupta, Medhanjali (2)
Owada, Shigeki (2)
Bevilacqua, E (2)
Hecher, K. (2)
Ville, Y (2)
Börgeson, Emma (2)
Sotak, Matus (2)
Oepkes, D (2)
Lopriore, E (2)
Karhunen, Ville (2)
de Mello, Vanessa D. (2)
Sehgal, Ratika (2)
Männistö, Ville (2)
Saura, Patricia (2)
Slaghekke, F (2)
Lewi, L (2)
Kilby, MD (2)
visa färre...
Lärosäte
Uppsala universitet (6)
Karolinska Institutet (6)
Göteborgs universitet (4)
Lunds universitet (4)
Stockholms universitet (3)
Umeå universitet (2)
visa fler...
Luleå tekniska universitet (2)
Linköpings universitet (2)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (8)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy