SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vinogradov Nikolay) srt2:(2015-2019)"

Sökning: WFRF:(Vinogradov Nikolay) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Simonov, Konstantin A., et al. (författare)
  • Effect of Electron Injection in Copper-Contacted Graphene Nanoribbons
  • 2016
  • Ingår i: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 9:9, s. 2735-2746
  • Tidskriftsartikel (refereegranskat)abstract
    • For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 A degrees C. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (Delta E similar to 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 A degrees C activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (E (F)), thus, proving the tunability of the induced n-doping.
  •  
3.
  • Simonov, Konstantin A., et al. (författare)
  • From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110) : Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:9, s. 8997-9011
  • Tidskriftsartikel (refereegranskat)abstract
    • Bottom-up strategies can be effectively implemented for the fabrication of atomically precise graphene nanoribbons. Recently, using 10,10'-dibromo-9,9'-bianthracene (DBBA) as a molecular precursor to grow armchair nanoribbons on Au(111) and Cu(111), we have shown that substrate activity considerably affects the dynamics of ribbon formation, nonetheless without significant modifications in the growth mechanism. In this paper we compare the on-surface reaction pathways for DBBA molecules on Cu(111) and Cu(110). Evolution of both systems has been studied via a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and theoretical calculations. Experimental and theoretical results reveal a significant increase in reactivity for the open and anisotropic Cu(110) surface in comparison with the close-packed Cu(111). This increased reactivity results in a predominance of the molecular substrate interaction over the intermolecular one, which has a critical impact on the transformations of DBBA on Cu(110). Unlike DBBA on Cu(111), the Ullmann coupling cannot be realized for DBBA/Cu(110) and the growth of nanoribbons via this mechanism is blocked. Instead, annealing of DBBA on Cu(110) at 250 degrees C results in the formation of a new structure: quasi-zero-dimensional flat nanographenes. Each nanographene unit has dehydrogenated zigzag edges bonded to the underlying Cu rows and oriented with the hydrogen-terminated armchair edge parallel to the [1-10] direction. Strong bonding of nanographene to the substrate manifests itself in a high adsorption energy of -12.7 eV and significant charge transfer of 3.46e from the copper surface. Nanographene units coordinated with bromine adatoms are able to arrange in highly regular arrays potentially suitable for nanotemplating.
  •  
4.
  • Vinogradov, Nikolay A., et al. (författare)
  • Single-Phase Borophene on Ir(111) : Formation, Structure, and Decoupling from the Support
  • 2019
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:12, s. 14511-14518
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial two-dimensional (2D) materials, which host electronic or spatial structure and properties not typical for their bulk allotropes, can be grown epitaxially on atomically flat surfaces; the design and investigation of these materials are thus at the forefront of current research. Here we report the formation of borophene, a planar boron allotrope, on the surface of Ir(111) by exposing it to the flux of elemental boron and consequent annealing. By means of scanning tunneling microscopy and density functional theory calculations, we reveal the complex structure of this borophene, different from all planar boron allotropes reported earlier. This structure forms as a single phase on iridium substrate in a wide range of experimental conditions and may be then decoupled from the substrate via intercalation. These findings allow for production of large, defect-free borophene sheets and advance theoretical understanding of polymorphism in borophene.
  •  
5.
  •  
6.
  • Carlomagno, I., et al. (författare)
  • Co film stretching induced by lattice mismatch and annealing : The role of Graphene
  • 2018
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332. ; 432, s. 22-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin Co films intercalated between a Graphene capping layer and the Ir(111) surface are of interest for spintronics applications due to their peculiar magnetic properties and to their chemical stability. The structure, and then the magnetic properties, of the Co films depend on the intercalation process which is strongly influenced by the temperature, total amount of Cobalt and quality of the capping Graphene layer. In order to identify and disentangle the effects of these contributions, we report on the structural characterisation of four Co films as a function of thickness, annealing temperature, and Graphene capping. From the structural point of view, the deposition of Co on a hot Ir substrate mimics quite well the intercalation process proving the validity of the colander model describing the Graphene role during the process.
  •  
7.
  • Doyle, Catherine M., et al. (författare)
  • Surface Mediated Synthesis of 2D Covalent Organic Networks : 1,3,5-Tris(4-bromophenyl)benzene on Au(111)
  • 2019
  • Ingår i: Physica Status Solidi (B) Basic Research. - : Wiley. - 0370-1972. ; 256:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent organic networks derived from surface-mediated self-assembly of 1,3,5-tris(4-bromophenyl)benzene into two-dimensional networks on Au(111) have been studied by scanning tunneling microscopy (STM) and by X-ray spectroscopic methods. High resolution soft X-ray photoemission spectroscopy (SXPS) using synchrotron radiation have been used to study the formation of the 1,3,5-tris(4-bromophenyl)benzene-derived 2D networks by observing temperature-dependent C 1s and Br 3d core level XPS spectra. X-ray absorption (XA) measurements of the formation of these 2D networks have been obtained at the C K-edge where their temperature and angular dependence are examined. The results of these XPS and XA spectroscopic measurements are compared to detailed ab initio electronic structure calculations of 1,3,5-tris(4-bromophenyl)benzene molecules to aid the interpretation of the features of these spectra.
  •  
8.
  • Evertsson, Jonas, et al. (författare)
  • Self-organization of porous anodic alumina films studied in situ by grazing-incidence transmission small-angle X-ray scattering
  • 2018
  • Ingår i: RSC Advances. - 2046-2069. ; 8:34, s. 18980-18991
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions.
  •  
9.
  • Generaloy, Alexander V., et al. (författare)
  • Evolution of CuI/Graphene/Ni(111) System during Vacuum Annealing
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:22, s. 12434-12444
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined core-level spectroscopy and low-energy electron diffraction study of the evolution of thin CuI layers on graphene/Ni(111) during annealing. It has been found that the annealing of the CuI/graphene/Ni(111) system up to 160 degrees C results in the formation of an ordered CuI overlayer with a (root 3 x root 3) R30 degrees structure on top of the graphene surface. At annealing temperatures of about 180 degrees C or higher, the CuI overlayer decomposes with a simultaneous intercalation of Cu and I atoms underneath the graphene monolayer on Ni(111). Nearly complete intercalation of graphene by Cu and I atoms can be achieved by deposition of about 20 angstrom of CuI, followed by annealing at 200 degrees C. The intercalated graphene layer is p-doped due to interfacial iodine atoms.
  •  
10.
  • Harlow, Gary S., et al. (författare)
  • Observing growth under confinement : Sn nanopillars in porous alumina templates
  • 2019
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry (RSC). - 2516-0230. ; 1:12, s. 4764-4771
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy