SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vinther B.) srt2:(2010-2014)"

Sökning: WFRF:(Vinther B.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
2.
  • Steen-Larsen, H. C., et al. (författare)
  • Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 13:9, s. 4815-4828
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project) camp, NW Greenland (77.45 degrees N, 51.05 degrees W, 2484 m a.s.l.). Measurements were conducted at 9 different heights from 0.1m to 13.5m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of similar to 0.23 parts per thousand for delta O-18 and similar to 1.4 parts per thousand for delta D. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn-air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40 parts per thousand) surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic) atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.
  •  
3.
  • Masson-Delmotte, V., et al. (författare)
  • Sensitivity of interglacial Greenland temperature and δ 18O : Ice core data, orbital and increased CO 2 climate simulations
  • 2011
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 7:3, s. 1041-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of interglacial Greenland temperature to orbital and CO 2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO 2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO 2 and orbital forcing of the last interglacial period (126 000 years ago). The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope - temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3-0.4% per °C) during warmer-than-present Arctic climates, in response to increased CO 2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by preliminary comparison with other models. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. Comparisons with Greenland ice core stable isotope data reveals that IPSL-CM4/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8-10 °C at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300-400 m.
  •  
4.
  • Sjolte, J., et al. (författare)
  • Modeling the water isotopes in Greenland precipitation 1959-2001 with the meso-scale model REMO-iso
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. D18105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice core studies have proved the delta(18)O in Greenland precipitation to be correlated to the phase of the North Atlantic Oscillation (NAO). This subject has also been investigated in modeling studies. However, these studies have either had severe biases in the delta(18)O levels, or have not been designed to be compared directly with observations. In this study we nudge a meso-scale climate model fitted with stable water isotope diagnostics (REMO-iso) to follow the actual weather patterns for the period 1959-2001. We evaluate this simulation using meteorological observations from stations along the Greenland coast, and delta(18)O from several Greenland ice core stacks and Global Network In Precipitation (GNIP) data from Greenland, Iceland and Svalbard. The REMO-iso output explains up to 40% of the interannual delta(18)O variability observed in ice cores, which is comparable to the model performance for precipitation. In terms of reproducing the observed variability the global model, ECHAM4-iso performs on the same level as REMO-iso. However, REMO-iso has smaller biases in delta(18)O and improved representation of the observed spatial delta(18)O-temperature slope compared to ECHAM4-iso. Analysis of the main modes of winter variability of delta(18)O shows a coherent signal in Central and Western Greenland similar to results from ice cores. The NAO explains 20% of the leading delta(18)O pattern. Based on the model output we suggest that methods to reconstruct the NAO from Greenland ice cores employ both delta(18)O and accumulation records.
  •  
5.
  • Vinther, Anders, et al. (författare)
  • Slide-based ergometer rowing: Effects on force production and neuromuscular activity.
  • 2013
  • Ingår i: Scandinavian Journal of Medicine & Science in Sports. - : Wiley. - 1600-0838 .- 0905-7188. ; 23:5, s. 635-644
  • Tidskriftsartikel (refereegranskat)abstract
    • Force production profile and neuromuscular activity during slide-based and stationary ergometer rowing at standardized submaximal power output were compared in 14 male and 8 female National Team rowers. Surface electromyography (EMG) was obtained in selected thoracic and leg muscles along with synchronous measurement of handle force and rate of force development (RFD). Compared to stationary conditions, slide-based peak force decreased by 76 (57-95) N (mean 95% CI) in males (P < 0.001) and 20 (8-31) N (P < 0.05) in females. Stroke rate increased (+10.7%) and late-phase RFD decreased (-20.7%) in males (P < 0.05). Neuromuscular activity in m. vastus lateralis decreased in the initial drive phase from 59% to 51% of EMGmax in males and from 57% to 52% in females (P < 0.01-0.05), while also decreasing in the late recovery phase from 20% to 7% in males and 17% to 7% in females (P < 0.01). Peak force and maximal neuromuscular activity in the shoulder retractors always occurred in the second quartile of the drive phase. In conclusion, peak force and late-phase RFD (males) decreased and stroke rate increased (males) during slide-based compared to stationary ergometer rowing, potentially reducing the risk of overuse injury. Neuromuscular activity was more affected in leg muscles than thoracic muscles by slide-based ergometer rowing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy