SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volante Marco) srt2:(2005-2009)"

Sökning: WFRF:(Volante Marco) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Granata, Riccarda, et al. (författare)
  • Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.
  • 2009
  • Ingår i: Cardiovascular research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 83:2, s. 303-12
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. METHODS AND RESULTS: Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. CONCLUSION: Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.
  •  
2.
  • Gustafsson Brywe, Katarina, 1965, et al. (författare)
  • Growth hormone-releasing peptide hexarelin reduces neonatal brain injury and alters Akt/glycogen synthase kinase-3beta phosphorylation
  • 2005
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:11, s. 4665-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexarelin (HEX) is a peptide GH secretagogue with a potent ability to stimulate GH secretion and recently reported cardioprotective actions. However, its effects in the brain are largely unknown, and the aim of the present study was to examine the potential protective effect of HEX on the central nervous system after injury, as well as on caspase-3, Akt, and extracellular signal-regulated protein kinase (ERK) signaling cascades in a rat model of neonatal hypoxia-ischemia. Hypoxic-ischemic insult was induced by unilateral carotid ligation and hypoxic exposure (7.7% oxygen), and HEX treatment was administered intracerebroventricularly, directly after the insult. Brain damage was quantified at four coronal levels and by regional neuropathological scoring. Brain damage was reduced by 39% in the treatment group, compared with vehicle group, and injury was significantly reduced in the cerebral cortex, hippocampus, and thalamus but not in the striatum. The cerebroprotective effect was accompanied by a significant reduction of caspase-3 activity and an increased phosphorylation of Akt and glycogen synthase kinase-3beta, whereas ERK was unaffected. In conclusion, we demonstrate for the first time that HEX is neuroprotective in the neonatal setting in vivo and that increased Akt signaling is associated with downstream attenuation of glycogen synthase kinase-3beta activity and caspase-dependent cell death.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy