SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wählby Carolina professor 1974 ) srt2:(2019)"

Sökning: WFRF:(Wählby Carolina professor 1974 ) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matuszewski, Damian J., 1988- (författare)
  • Image and Data Analysis for Biomedical Quantitative Microscopy
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents automatic image and data analysis methods to facilitate and improve microscopy-based research and diagnosis. New technologies and computational tools are necessary for handling the ever-growing amounts of data produced in life science. The thesis presents methods developed in three projects with different biomedical applications.In the first project, we analyzed a large high-content screen aimed at enabling personalized medicine for glioblastoma patients. We focused on capturing drug-induced cell-cycle disruption in fluorescence microscopy images of cancer cell cultures. Our main objectives were to identify drugs affecting the cell-cycle and to increase the understanding of different drugs’ mechanisms of action.  Here we present tools for automatic cell-cycle analysis and identification of drugs of interest and their effective doses.In the second project, we developed a feature descriptor for image matching. Image matching is a central pre-processing step in many applications. For example, when two or more images must be matched and registered to create a larger field of view or to analyze differences and changes over time. Our descriptor is rotation-, scale-, and illumination-invariant and it has a short feature vector which makes it computationally attractive. The flexibility to combine it with any feature detector and the customization possibility make it a very versatile tool.In the third project, we addressed two general problems for bridging the gap between deep learning method development and their use in practical scenarios. We developed a method for convolutional neural network training using minimally annotated images. In many biomedical applications, the objects of interest cannot be accurately delineated due to their fuzzy shape, ambiguous morphology, image quality, or the expert knowledge and time it requires. The minimal annotations, in this case, consist of center-points or centerlines of target objects of approximately known size. We demonstrated our training method in a challenging application of a multi-class semantic segmentation of viruses in transmission electron microscopy images. We also systematically explored the influence of network architecture hyper-parameters on its size and performance and show the possibility to substantially reduce the size of a network without compromising its performance.All methods in this thesis were designed to work with little or no input from biomedical experts but of course, require fine-tuning for new applications. The usefulness of the tools has been demonstrated by collaborators and other researchers and has inspired further development of related algorithms.
  •  
2.
  • Suveer, Amit, 1987- (författare)
  • Methods for Processing and Analysis of Biomedical TEM Images
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transmission Electron Microscopy (TEM) has the high resolving capability and high clinical significance; however, the current manual diagnostic procedure using TEM is complicated and time-consuming, requiring rarely available expertise for analyzing TEM images of the biological specimen. This thesis addresses the bottlenecks of TEM-based analysis by proposing image analysis methods to automate and improve critical time-consuming steps of currently manual diagnostic procedures. The automation is demonstrated on the computer-assisted diagnosis of Primary Ciliary Dyskinesia (PCD), a genetic condition for which TEM analysis is considered the gold standard.The methods proposed for the automated workflow mimic the manual procedure performed by the pathologists to detect objects of interest – diagnostically relevant cilia instances – followed by a computational step to combine information from multiple detected objects to enhance the important structural details. The workflow includes an approach for efficient search through a sample to identify objects and locate areas with a high density of objects of interest in low-resolution images, to perform high-resolution imaging of the identified areas. Subsequently, high-quality objects in high-resolution images are detected, processed, and the extracted information is combined to enhance structural details.This thesis also addresses the challenges typical for TEM imaging, such as sample drift and deformation, or damage due to high electron dose for long exposure times. Two alternative paths are investigated: (i) different strategies combining short exposure imaging with suitable denoising techniques, including conventional approaches and a proposed deep learning based method, are explored; (ii) conventional interpolation approaches and a proposed deep learning based method are analyzed for super-resolution reconstruction using a single image. For both explored directions, in the best case scenario, the processing time is nearly 20 times faster as compared to the acquisition time for a single long exposure high illumination image. Moreover, the reconstruction approach (ii) requires nearly 16 times lesser data (storage space) and overcomes the need for high-resolution image acquisition.Finally, the thesis addresses critical needs to enable objective and reliable evaluation of TEM image denoising approaches. A method for synthesizing realistic noise-free TEM reference images is proposed, and a denoising benchmark dataset is generated and made publicly available. The proposed dataset consists of noise-free references along with masks encompassing the critical diagnostic structures. This enables performance evaluation based on the capability of denoising methods to preserve structural details, instead of merely grading them based on the signal to noise ratio improvement and preservation of gross structures.
  •  
3.
  • Günaydin, Gökce, et al. (författare)
  • Impact of Q-Griffithsin anti-HIV microbicide gel in non-human primates : In situ analyses of epithelial and immune cell markers in rectal mucosa
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural-product derived lectins can function as potent viral inhibitors with minimal toxicity as shown in vitro and in small animal models. We here assessed the effect of rectal application of an anti-HIV lectin-based microbicide Q-Griffithsin (Q-GRFT) in rectal tissue samples from rhesus macaques. E-cadherin(+) cells, CD4(+) cells and total mucosal cells were assessed using in situ staining combined with a novel customized digital image analysis platform. Variations in cell numbers between baseline, placebo and Q-GRFT treated samples were analyzed using random intercept linear mixed effect models. The frequencies of rectal E-cadherin(+) cells remained stable despite multiple tissue samplings and Q-GRFT gel (0.1%, 0.3% and 1%, respectively) treatment. Whereas single dose application of Q-GRFT did not affect the frequencies of rectal CD4(+) cells, multi-dose Q-GRFT caused a small, but significant increase of the frequencies of intra-epithelial CD4(+) cells (placebo: median 4%; 1% Q-GRFT: median 7%) and of the CD4(+) lamina propria cells (placebo: median 30%; 0.1-1% Q-GRFT: median 36-39%). The resting time between sampling points were further associated with minor changes in the total and CD4(+) rectal mucosal cell levels. The results add to general knowledge of in vivo evaluation of anti-HIV microbicide application concerning cellular effects in rectal mucosa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy