SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahab Qamar Ul) srt2:(2015-2019)"

Sökning: WFRF:(Wahab Qamar Ul) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haque, Muhammad Fahim Ul (författare)
  • Pulse-Width Modulated RF Transmitters
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The market for wireless portable devices has grown signicantly over the recent years.Wireless devices with ever-increased functionality require high rate data transmissionand reduced costs. High data rate is achieved through communication standards such asLTE and WLAN, which generate signals with high peak-to-average-power ratio (PAPR),hence requiring a power amplier (PA) that can handle a large dynamic range signal. Tokeep the costs low, modern CMOS processes allow the integration of the digital, analogand radio functions on to a single chip. However, the design of PAs with large dynamicrange and high eciency is challenging due to the low voltage headroom.To prolong the battery life, the PAs have to be power-ecient as they consume a sizablepercentage of the total power. For LTE and WLAN, traditional transmitters operatethe PA at back-o power, below their peak efficiency, whereas pulse-width modulation(PWM) transmitters use the PA at their peak power, resulting in a higher efficiency.PWM transmitters can use both linear and SMPAs where the latter are more power efficient and easy to implement in nanometer CMOS. The PWM transmitters have a higher efficiency but suffer from image and aliasing distortion, resulting in a lower dynamic range,amplitude and phase resolution.This thesis studies several new transmitter architectures to improve the dynamicrange, amplitude and phase resolution of PWM transmitters with relaxed filtering requirements.The architectures are suited for fully integrated CMOS solutions, in particular forportable applications.The first transmitter (MAF-PWMT) eliminates aliasing and image distortions whileallowing the use of SMPAs by combining RF-PWM and band-limited PWM. The transmittercan be implemented using all-digital techniques and exhibits an improved linearity and spectral performance. The approach is validated using a Class-D PA based transmitter where an improvement of 10.2 dB in the dynamic range compared to a PWM transmitter for a 1.4 MHz of LTE signal is achieved.The second transmitter (AC-PWMT) compensates for aliasing distortion by combining PWM and outphasing. It can be used with switch-mode PAs (SMPAs) or linear PAs at peak power. The proposed transmitter shows better linearity, improved spectral performanceand increased dynamic range as it does not suffer from AM-AM distortion of the PAs and aliasing distortion due to digital PWM. The idea is validated using push-pull PAs and the proposed transmitter shows an improvement of 9 dB in the dynamic rangeas compared to a PWM transmitter using digital pulse-width modulation for a 1.4 MHzLTE signal.The third transmitter (MD-PWMT) is an all-digital implementation of the second transmitter. The PWM is implemented using a Field Programmable Gate Array(FPGA) core, and outphasing is implemented as pulse-position modulation using FPGA transceivers, which drive two class-D PAs. The digital implementation offers the exibility to adapt the transmitter for multi-standard and multi-band signals. From the measurement results, an improvement of 5 dB in the dynamic range is observed as compared to an all-digital PWM transmitter for a 1.4 MHz LTE signal.The fourth transmitter (EP-PWMT) improves the phase linearity of an all-digital PWM transmitter using PWM and asymmetric outphasing. The transmitter uses PWM to encode the amplitude, and outphasing for enhanced phase control thus doubling the phase resolution. The measurement setup uses Class-D PAs to amplify a 1.4 MHz LTEup-link signal. An improvement of 2.8 dB in the adjacent channel leakage ratio is observed whereas the EVM is reduced by 3.3 % as compared to an all-digital PWM transmitter.The fifth transmitter (CRF-ML-PWMT) combines multilevel and RF-PWM, whereas the sixth transmitter (CRF-MP-PMWT) combines multiphase PWM and RF-PWM. Both transmitters have smaller chip area as compared to the conventional multiphase and multilevel PWM transmitters, as a combiner is not required. The proposed transmitters also show better dynamic range and improved amplitude resolution as compared to conventional RF-PWM transmitters.The solutions presented in this thesis aims to enhance the performance and simplify the digital implementation of PWM-based RF transmitters.
  •  
2.
  • Arshad, Sana, et al. (författare)
  • 50-830 MHz noise and distortion canceling CMOS low noise amplifier
  • 2018
  • Ingår i: Integration. - : Elsevier. - 0167-9260 .- 1872-7522. ; 60, s. 63-73
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a modified resistive shunt feedback topology is proposed that performs noise cancelation and serves as an opposite polarity non-linearity generator to cancel the distortion produced by the main stage. The proposed topology has a bandwidth similar to a resistive shunt feedback LNA, but with a superior noise figure (NF) and linearity. The proposed wideband LNA is fabricated in 130 nm CMOS technology and occupies an area of 0.5 mm(2). Measured results depict 3-dB bandwidth from 50 to 830 MHz. The measured gain and NF at 420 MHz are 17 dB and 2.2 dB, respectively. The high value of the 1/f noise is one of the key problems in low frequency CMOS designs. The proposed topology also addresses this challenge and a low NF is attained at low frequencies. Measured 811 and S22 are better than -8.9 dB and -8.5 dB, respectively within the 0.05-1 GHz band. The 1-dB compression point is -11.5 dBm at 700 MHz, while the IIP3 is -6.3 dBm. The forward core consumes 14 mW from a 1.8 V supply. This LNA is suitable for VHF and UHF SDR communication receivers.
  •  
3.
  • Khan, Hashim Raza, et al. (författare)
  • Design of a broadband current mode class-D power amplifier with harmonic suppression
  • 2016
  • Ingår i: Analog Integrated Circuits and Signal Processing. - : Springer. - 0925-1030 .- 1573-1979. ; 89:1, s. 15-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Current mode class-D power amplifiers (CMCD-PA) are attractive for fully integrated PA implementation as the output capacitance of the active device can be absorbed in the output matching network that can be realized with minimum number of components. This paper presents a simplified design approach for CMCD PA design using an integrated balun transformers. Expressions are derived for the optimum device sizing for second harmonic suppression resulting in improved efficiency. An expression of amplifier efficiency as a function of device size is is presented proving that current mode class-D amplifier yields higher higher efficiency than a class-E amplifier for the same device size. The amplifier is implemented in 130 nm CMOS process and encapsulated in QFN package. Measurement results show that the amplifier exhibits broadband response between 1.4 and 2.1 GHz with peak output power of 26.8 dBm at 1.8 GHz using a 2.4 V supply. PAE remains above 40 % for the entire range while peak PAE is 48 %. Results show a good match between simulation and measurement work. Voltage sweep of the amplifier shows that it can be used in supply modulation based LINC techniques.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy