SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahlestedt Claes) srt2:(2005-2009)"

Sökning: WFRF:(Wahlestedt Claes) > (2005-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Frith, Martin C., et al. (författare)
  • Pseudo-messenger RNA : Phantoms of the transcriptome
  • 2006
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 2:4, s. 504-514
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian transcriptome harbours shadowy entities that resist classification and analysis. In analogy with pseudogenes, we define pseudo-messenger RNA to be RNA molecules that resemble protein- coding mRNA, but cannot encode full-length proteins owing to disruptions of the reading frame. Using a rigorous computational pipeline, which rules out sequencing errors, we identify 10,679 pseudo - messenger RNAs ( approximately half of which are transposonassociated) among the 102,801 FANTOM3 mouse cDNAs: just over 10% of the FANTOM3 transcriptome. These comprise not only transcribed pseudogenes, but also disrupted splice variants of otherwise protein- coding genes. Some may encode truncated proteins, only a minority of which appear subject to nonsense- mediated decay. The presence of an excess of transcripts whose only disruptions are opal stop codons suggests that there are more selenoproteins than currently estimated. We also describe compensatory frameshifts, where a segment of the gene has changed frame but remains translatable. In summary, we survey a large class of non- standard but potentially functional transcripts that are likely to encode genetic information and effect biological processes in novel ways. Many of these transcripts do not correspond cleanly to any identifiable object in the genome, implying fundamental limits to the goal of annotating all functional elements at the genome sequence level.
  •  
3.
  • Hong, Junmei, et al. (författare)
  • Focusing on RISC assembly in mammalian cells.
  • 2008
  • Ingår i: Biochem Biophys Res Commun. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 368:3, s. 703-8
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.
  •  
4.
  • Scheele, Camilla, et al. (författare)
  • Altered regulation of the PINK1 locus: a link between Type 2 diabetes and neurodegeneration?
  • 2007
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 21:13, s. 3653-3665
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in PINK1 cause the mitochondrial-related neurodegenerative disease Parkinson’s. Here we investigate whether obesity, type 2 diabetes, or inactivity alters transcription from the PINK1 locus. We utilized a cDNA-array and quantitative real-time PCR for gene expression analysis of muscle from healthy volunteers following physical inactivity, and muscle and adipose tissue from nonobese or obese subjects with normal glucose tolerance or type 2 diabetes. Functional studies of PINK1 were performed utilizing RNA interference in cell culture models. Following inactivity, the PINK1 locus had an opposing regulation pattern (PINK1 was down-regulated while natural antisense PINK1 was up-regulated). In type 2 diabetes skeletal muscle, all transcripts from the PINK1 locus were suppressed and gene expression correlated with diabetes status. RNA interference of PINK1 in human neuronal cell lines impaired basal glucose uptake. In adipose tissue, mitochondrial gene expression correlated with PINK1 expression although remained unaltered following siRNA knockdown of Pink1 in primary cultures of brown preadipocytes. In conclusion, regulation of the PINK1 locus, previously linked to neurodegenerative disease, is altered in obesity, type 2 diabetes and inactivity, while the combination of RNAi experiments and clinical data suggests a role for PINK1 in cell energetics rather than in mitochondrial biogenesis.
  •  
5.
  • Timmons, James A, et al. (författare)
  • Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes
  • 2006
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 87:1, s. 165-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity enhances muscle mitochondrial gene expression, while inactivity and mitochondrial dysfunction are both risk factors for developing diabetes. Defective activation of the transcriptional coactivator PGC-1 may contribute to the gene expression pattern observed in diabetic and insulin-resistant skeletal muscle. We proposed that greater insight into the mitochondrial component of skeletal muscle “diabetes” would be possible if the clinical transcriptome data were contrasted with local muscle inactivity-induced modulation of mitochondrial genes in otherwise healthy subjects. We studied PPARGC1A (PGC-1), PPARGC1B (PGC-1β), NRF1, and a variety of mitochondrial DNA (mtDNA) and nuclear-encoded mitochondrial genes critical for oxidative phosphorylation in soleus muscle biopsies obtained from six healthy men and women before and after 5 weeks of local muscle inactivity. Muscle inactivity resulted in a coordinated down-regulation of PGC-1 and genes involved with mitochondrial metabolism, including muscle substrate delivery genes. Decreased expression of the mtDNA helicase Twinkle was related to the decline in mitochondrial RNA polymerase (r = 0.83, p < 0.04), suggesting that mtDNA transcription and replication are coregulated in human muscle tissue. In contrast to the situation in diabetes, PGC-1β expression was not significantly altered, while NRF1 expression was actually up-regulated following muscle inactivity. We can conclude that reduced PGC-1 expression described in Type 2 diabetes may be partly explained by muscle inactivity. Further, although diabetes patients are typically inactive, our analysis indicates that local muscle inactivity may not be expected to contribute to the decreased NRF1 and PGC-1β expression noted in insulin-resistant and Type 2 diabetes patients, suggesting these changes may be more disease specific.
  •  
6.
  • Timmons, James A, et al. (författare)
  • Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages.
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:11, s. 4401-4406
  • Tidskriftsartikel (refereegranskat)abstract
    • Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy